Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T03:40:42.631Z Has data issue: false hasContentIssue false

Statistical nonparametric methods for the study of fossil populations

Published online by Cambridge University Press:  08 February 2016

Hervé Monchot
Affiliation:
Laboratoire d'Anthropologie, UMR 6569, Faculté de Médecine-Secteur Nord, Boulevard Pierre Dramard, F-13916 Marseille cedex 20, France. E-mail: Herve.Monchot@medecine.univ-mrs.fr
Jacques Léchelle
Affiliation:
Le Bel Ormeau, Bâtiment Q2, 422 avenue Jean-Paul Coste, F-13100 Aix-en-Provence, France. E-mail: Jacques.Lechelle@wanadoo.fr

Abstract

The precise knowledge of the number and nature of the species belonging to a fossil assemblage as well as of the structure of each species (e.g., age, sex) is of great importance in paleontology. Mixture analysis based on the method of maximum likelihood is a modern statistical technique that concerns the problem of samples consisting of several components, the composition of which is not known. Nonparametric bootstrap and jackknife techniques are used to calculate a confidence interval for each estimated parameter (prior probability, mean, standard deviation) of each group. The bootstrap method is also used to evaluate mathematically how many groups are present in a sample. Experimental density smoothing using the kernel method appears to be a better solution than the use of histograms for the estimation of a distribution. This paper presents some basic concepts and procedures and discusses some preliminary results concerning sex ratios and mortality profile assessments using bones and tooth metric data of small (Ovis antiqua) and large (Bos primigenius) bovines from European Pleistocene sites.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aitkin, M., and Tunnicliffe Wilson, G. 1980. Mixture models, outliers, and the EM algorithm. Technometrics 22:325331.CrossRefGoogle Scholar
Auguste, P. 1995. Cadres biostratigraphiques et paléoécologiques du peuplement humain dans la France septentrionale durant le pléistocène: apports de l'étude paléontologique des grands mammifères du gisement de Biache-Saint-Vaast (Pas-de-Calais). . Muséum national d'Histoire naturelle, Paris.Google Scholar
Auguste, P., and Patou-Mathis, M. 1994. L'aurochs au paléolithique. Pp. 1326in Roulière-Lambert, M.-J.Aurochs, le retour: aurochs, vaches et autres bovins de la préhistoire à nos jours. Centre Jurassien du Patrimoine, Lons-le-Saulnier, France.Google Scholar
Barbi, G. 1994. La fauna a mammiferi del pleistocene medio di Castel di Guido (Roma). Tesi di laurea scienze Geologia, Università Ferrara, Ferrara, Italy.Google Scholar
Basford, K. E., Greenway, D. R., McLachlan, G. J., and Peel, D. 1997. Standard errors of fitted component means of normal mixtures. Computational Statistics 12:117.Google Scholar
Brugal, J. P. 1983. Applications des analyses multidimensionnelles à l'étude du squelette des membres des grands bovidés pléistocènes (grottes de Lunel-Viel, Hérault), perspectives évolutives. . Université de la Méditerranée, Aix-Marseille II.Google Scholar
Diaconis, P., and Efron, B. 1983. Computer-intensive methods in statistics. Scientific American 248:116130.CrossRefGoogle Scholar
Dong, Z. 1997. Mixture analysis and its preliminary application in archaeology. Journal of Archaeological Science 24:141161.CrossRefGoogle Scholar
Edwards, A. W. F. 1984. Likelihood. Cambridge University Press, Cambridge.Google Scholar
Efron, B. 1982. The jackknife, the bootstrap and other resampling plans. Society for Industrial and Applied Mathematics, Philadelphia.CrossRefGoogle Scholar
Efron, B., and Gong, G. 1983. A leisurely look at the bootstrap, the jackknife and cross-validation. American Statistician. 37:3648.Google Scholar
Everitt, B. S. 1984. Maximum likelihood estimation of the parameters in a mixture of two univariate normal distributions; a comparison of different algorithms. Statistician 33:205215.CrossRefGoogle Scholar
Flury, B. D., Airoldi, J. P., and Biber, J. P. 1992. Gender identification of water pipits (Anthus spinoletta) using mixtures of distributions. Journal of Theoretical Biology 158:465480.CrossRefGoogle Scholar
Ghose, B. K. 1970. Statistical analysis of mixed fossil populations. Mathematical Geology 2:265276.CrossRefGoogle Scholar
Gifford-Gonzalez, D. 1991. Examining and refining the quadratic crown height method of age estimation. Pp. 4178in Stiner, M. C., ed. Human predators and prey mortality. Westview, Boulder, Colo.Google Scholar
Josephson, S. C., Juell, K. E., and Roger, A. R. 1996. Estimating sexual dimorphism by method-of-moments. American Journal of Physical Anthropology 100:191208.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Klein, R. G. 1982. Age (mortality) profiles as a mean of distinguishing hunted species from scavenged ones in Stone Age archaeological sites. Paleobiology 8:151158.CrossRefGoogle Scholar
Klein, R. G., and Cruz-Uribe, K. 1984. The analysis of animal bones from archaeological sites. University of Chicago Press, Chicago.Google Scholar
Klein, R. G., Allwarden, K., and Wolf, C. 1983. The calculation and interpretation of ungulate age profiles from dental crown heights. Pp. 4757in Bayley, G., ed. Hunter-gatherer economy in prehistory: a European perspective. Cambridge University Press, Cambridge.Google Scholar
Lumley de, H., Fournier, A., Park, Y. C., Yokoyama, Y., and Demouy, A. 1984. Stratigraphie du remplissage pléistocène moyen de la caune de l'Arago à Tautavel: étude de huit carottages effectués de 1981 à1983. Anthropologie 88:518.Google Scholar
McLachlan, G. J., and Basford, K. E. 1988. Mixture models: inference and applications to clustering. Marcel Dekker, New York.Google Scholar
Monchot, H. 1996. Les petits bovidés (genres Ovis, Hemitragus, Capra et Rupicapra) de la Caune de l'Arago (Tautavel, Pyrénées-Orientales). . Université de la Méditerranée, Aix-Marseille II.Google Scholar
Monchot, H. 1999a. Mixture analysis and mammalian sex-ratio among middle pleistocene mouflon of Arago Cave, France. Quaternary Research 52:259268.CrossRefGoogle Scholar
Monchot, H. 1999b. La caza del muflón (Ovis antiqua Pommerol, 1879) en el pleistoceno medio de los Pirineos: el ejemplo de la cueva de l'Aragó (Tautavel, Francia). Revista Española de Paleontología 14:6778.Google Scholar
Payne, S. 1973. Kill-off patterns in sheep and goats: the mandibles from Asvan Kale. Anatolian Studies 23:281303.CrossRefGoogle Scholar
Payne, S. 1985. Morphological distinction between the mandibular teeth of young sheep, Ovis, and goats, Capra. Journal of Archeological Science 13:139147.CrossRefGoogle Scholar
Pearson, K. 1884. Contribution to the mathematical theory of evolution. Philosophical Transactions of the Royal Society of London A 185:71110.Google Scholar
Pike-Tay, A., Cabrera Valdes, V., and Bernaldo de Quiro, F. 1999. Seasonal variations of the middle-upper palaeolithic transition at El Castillo, Cueva Morin and El Pendo (Cantabria, Spain). Journal of Human Evolution 36:283317.CrossRefGoogle Scholar
Polymenis, A., and Titterington, D. M. 1998. On the determination of the number of components in a mixture. Statistics and Probability Letters 38:295298.CrossRefGoogle Scholar
Radmilli, A. M. and Boschian, G. 1996. Gli scavi a Castel di Guido. Istituto Italiano di Preistoria e Protostoria, Firenze.Google Scholar
Redner, R. A., and Walker, H. F. 1984. Mixture densities, maximum likelihood and the EM algorithm. Society for Industrial and Applied Mathematics Review 26:195239.Google Scholar
Richardson, S., and Green, P. J. 1997. On Bayesian analysis of mixtures with an unknown number of components. Journal of the Royal Statistical Society B 59:731792.CrossRefGoogle Scholar
Speth, J. D. 1983. Bison kills and bones counts. University of Chicago Press, Chicago.Google Scholar
Stiner, M. C., Achyuthan, H., Arsebük, G., Howell, F. C., Josephson, S. C., Juell, K. E., Pigati, J., and Quade, J. 1998. Reconstructing cave bear paleoecology from skeletons: a cross-disciplinary study of middle pleistocene bears from Yarimburgaz cave, Turkey. Paleobiology 24:7498.CrossRefGoogle Scholar
Tan, W. Y., and Chang, W. C. 1972. Some comparisons of the method of moments and the method of maximum likelihood in estimating parameters of a mixture of two normal densities. Journal of the American Statistical Association 67:702708.CrossRefGoogle Scholar
Wand, M. P., and Jones, M. C. 1995. Kernel smoothing. Monographs on Statistics and Applied Probability 60.CrossRefGoogle Scholar