Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T20:01:33.319Z Has data issue: false hasContentIssue false

Ecological fidelity of functional traits based on species presence-absence in a modern mammalian bone assemblage (Amboseli, Kenya)

Published online by Cambridge University Press:  08 April 2016

Joshua H. Miller
Affiliation:
Department of Geology, University of Cincinnati, Cincinnati, Ohio 45221 U.S.A., Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 U.S.A., and Department of Geology and Geophysics, University of Alaska Museum, Fairbanks, Alaska 99775, U.S.A. E-mail: josh.miller@uc.edu
Anna K. Behrensmeyer
Affiliation:
Department of Paleobiology and ETE Program, National Museum of Natural History, Smithsonian Institution, Washington D.C. 20013 U.S.A.
Andrew Du
Affiliation:
Hominid Paleobiology Doctoral Program, Center for the Advanced Study of Hominid Paleobiology, Department of Anthropology, The George Washington University, Washington D.C. 20052, U.S.A. and Department of Paleobiology and ETE Program, National Museum of Natural History, Smithsonian Institution, Washington D.C. 20013, U.S.A.
S. Kathleen Lyons
Affiliation:
Department of Paleobiology and ETE Program, National Museum of Natural History, Smithsonian Institution, Washington D.C. 20013 U.S.A.
David Patterson
Affiliation:
Hominid Paleobiology Doctoral Program, Center for the Advanced Study of Hominid Paleobiology, Department of Anthropology, The George Washington University, Washington D.C. 20052, U.S.A. and Department of Paleobiology and ETE Program, National Museum of Natural History, Smithsonian Institution, Washington D.C. 20013, U.S.A.
Anikó Tóth
Affiliation:
Department of Paleobiology and ETE Program, National Museum of Natural History, Smithsonian Institution, Washington D.C. 20013 U.S.A.
Amelia Villaseñor
Affiliation:
Hominid Paleobiology Doctoral Program, Center for the Advanced Study of Hominid Paleobiology, Department of Anthropology, The George Washington University, Washington D.C. 20052, U.S.A. and Department of Paleobiology and ETE Program, National Museum of Natural History, Smithsonian Institution, Washington D.C. 20013, U.S.A.
Erustus Kanga
Affiliation:
Ecosystems Conservation and Management Department, Kenya Wildlife Service, Post Office Box 40241, 00100, Nairobi, Kenya
Denné Reed
Affiliation:
Department of Anthropology, University of Texas at Austin, Austin, Texas 78712, U.S.A.

Abstract

Comparisons between modern death assemblages and their source communities have demonstrated fidelity to species diversity across a variety of environments and taxonomic groups. However, differential species preservation and collection (including body-size bias) in both modern and fossil death assemblages may still skew the representation of other important ecological characteristics. Here, we move beyond live-dead taxonomic fidelity and focus on the recovery of functional ecology (how species interact with their ecosystem) at the community level for a diverse non-volant mammal community (87 species; Amboseli, Kenya). We use published literature to characterize species, using four functional traits and their associated categorical attributes (i) dietary mode (11 attributes; e.g., browser, grazer), (ii) preferred feeding habitat (16 attributes; e.g., grassland, woodland), (iii) preferred sheltering habitat (17 attributes; e.g., grassland, underground cavity), and (iv) activity time (7 attributes; e.g., diurnal, nocturnal, nocturnally dominated crepuscular). For each functional ecological trait we compare the death assemblage's recovered richness and abundance structure of constituent functional attributes with those of the source community, using Jaccard similarity, Spearman's rho, and the Probability of Interspecific Encounter (evenness). We use Monte Carlo simulations to evaluate whether these empirical comparisons are significantly different from expectations calculated from randomized sampling of species from the source community. Results indicate that although the Amboseli death assemblage is significantly overrepresented by large-bodied species relative to the Amboseli source community, it captures many functional dimensions of the ecosystem within expectations of a randomized collection of species. Additional resampling simulations and logistic regressions further illustrate that the size bias inherent to the Amboseli death assemblage is not a major driver of deviations between the functional ecological properties of the death assemblage and its source community. Finally, the Amboseli death assemblage also enhances our understanding of the mammal community by adding nine species and two functional attributes previously unknown from the ecosystem.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Altmann, J., Albert, S. C., and Altmann, S. A. 2002. Dramatic change in local climate patterns in the Amboseli basin, Kenya. African Journal of Ecology 40:248251.Google Scholar
Anderson, M. J. 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245253.Google Scholar
Anderson, P. S. L., Friedman, M., Brazeau, M. D., and Rayfield, E. J. 2011. Initial radiation of jaws demonstrated stability despite faunal and environmental change. Nature 476:206209.Google Scholar
Andrews, P. 2006. Taphonomic effects of faunal impoverishment and faunal mixing. Palaeogeography, Palaeoclimatology, Palaeoecology 241:572589.Google Scholar
Andrews, P., Lord, J. M., and Nesbit, E. M. 1979. Patterns of ecological diversity in fossil and modern mammalian faunas. Biological Journal of the Linnean Society 11:177205.Google Scholar
Badgley, C. E., Barry, J. C., Morgan, M. E., Nelson, S. V., Behrensmeyer, A. K., Cerling, T. E., and Pilbeam, D. 2008. Ecological changes in Miocene mammalian record show impact of prolonged climatic forcing. Proceedings of the National Academy of Sciences USA 105:12,14512,149.Google Scholar
Behrensmeyer, A. K. 1978. Taphonomic and ecologic information from bone weathering. Paleobiology 4:150162.Google Scholar
Behrensmeyer, A. K., and Hook, R. W. 1992. Paleoenvironmental contexts and taphonomic modes in the terrestrial fossil record. Pp. 15136inBehrensmeyer, A. K., Damuth, J. D., DiMichele, W. A., Potts, R., Sues, H.-D., and Wing, S. L., eds. Terrestrial ecosystems through time. University of Chicago Press, Chicago.Google Scholar
Behrensmeyer, A. K., and Miller, J. H. 2012. Building links between ecology and paleontology using taphonomic studies of recent vertebrate communities. Pp. 6991inLouys, J., ed. Paleontology in ecology and conservation. Springer, New York. doi 10.1007/978-3-642-25038-5_5.Google Scholar
Behrensmeyer, A. K., Western, D., and Boaz, D. E. D. 1979. New perspectives in vertebrate paleoecology from a recent bone assemblage. Paleobiology 5:1221.Google Scholar
Behrensmeyer, A. K., Western, D., Badgley, C., Miller, J. H., and Odock, F. 2012. The impact of mass mortality on the surface bone assemblage of Amboseli Park, Kenya. Society of Vertebrate Paleontology Abstracts and Program, p. 62.Google Scholar
Blaum, N., Mosner, E., Schwager, M., and Jeltsch, F. 2011. How functional is functional? Ecological groupings in terrestrial animal ecology: towards an animal functional type approach. Biodiversity and Conservation 20:23332345.Google Scholar
Blondel, J. 2003. Guilds or functional groups: does it matter? Oikos 100:223231.CrossRefGoogle Scholar
Brain, C. K. 1980. Some criteria for the recognition of bone-collecting agencies in African caves. Pp. 108–30 inBehrensmeyer, A. K. and Hill, A., eds. Fossils in the making. University of Chicago Press, Chicago.Google Scholar
Byrom, A., Craft, M., Durant, S., Nkwabi, A. J. K., Metzger, K., Hampson, K., Mduma, S., Forrester, G., Ruscoe, W., Reed, D., Bukombe, J., Chetto, J. M., and Sinclair, A. R. E. 2014. Episodic outbreaks of small mammals influence predator community dynamics in an East African savanna ecosystem. Oikos. doi: 10.1111/oik.00962(in press).Google Scholar
Calow, P. 1987. Towards a definition of functional ecology. Functional Ecology 1:5761.Google Scholar
Ceballos, G., and Ehrlich, P. R. 2006. Global mammal distributions, biodiversity hotspots, and conservation. Proceedings of the National Academy of Sciences USA 103:19,37419,379.Google Scholar
Cadotte, M. W., Carscadden, K., and Mirotchnick, N. 2011. Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology 48:10791087.Google Scholar
Cerling, T. E., and Harris, J. M. 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120:347363.Google Scholar
Cerling, T. E., Chritz, K. L., Jablonski, N. G., Leakey, M. G., and Manthi, F. K. 2013. Diet of Theropithecus from 4 to 1 Ma in Kenya. Proceedings of the National Academy of Sciences USA 110:10,50710,512. doi:10.1073/pnas.1222571110.CrossRefGoogle Scholar
Cummins, K. W. 1974. Structure and function of stream ecosystems. Bioscience 24:631641.Google Scholar
Damuth, J., Jablonski, D., Harris, J. W., Potts, R., Stucky, R. K., Sues, H.-D. and Weishampel, D. B. 1992. Taxon-free characterization of animal communities. Pp. 183203inBehrensmeyer, A. K., Damuth, J. D., DiMichele, W. A., Potts, R., Sues, H.-D., and Wing, S. L., eds. Terrestrial ecosystems through time. University of Chicago Press, ChicagoGoogle Scholar
Damuth, J., Behrensmeyer, A. K., DiMichele, W. A., Labandeira, C., Potts, R., Wing, S. 1997. Evolution of terrestrial ecosystems database manual, 2nd ed. Evolution of Terrestrial Ecosystems Consortium, Smithsonian Institution, Washington, D.C.Google Scholar
Estes, R. D. 1991. The behavior guide to African mammals: including hoofed mammals, carnivores, primates. University of California Press, Berkeley.Google Scholar
Fernández-Jalvo, Y., Denys, C., Andrews, P., Williams, T., Dauphin, Y., and Humphrey, L. 1998. Taphonomy and palaeoecology of Olduvai Bed-I (Pleistocene, Tanzania). Journal of Human Evolution 34:137172.Google Scholar
Foote, M. 1993. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19:185204.Google Scholar
Foote, M. 1994. Morphological disparity in Ordovician–Devonian crinoids and the early saturation of morphological space. Paleobiology 20:320344.Google Scholar
Foote, M. 1995. Morphological diversification of Paleozoic crinoids. Paleobiology 21:273299.Google Scholar
Foote, M. 1999. Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology 25:1116.Google Scholar
Fortelius, M., and Solounias, N. 2000. Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets. American Museum Novitates 3301:136.Google Scholar
Fortelius, M., Werdelin, L., Andrews, P., Bernor, R. L., Gentry, A., Humphrey, L., Mitmann, H.-W., and Viranta, S. 1996. Provinciality, diversity, turnover and paleoecology in land mammal faunas of the later Miocene of Western Eurasia. Pp. 414448inBernor, R. L., Fahlbusch, V., and Mittmann, H. V., eds. The evolution of western Eurasian Neogene mammal faunas. Columbia University Press, New York.Google Scholar
Friedman, M. 2010. Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction. Proceedings of the Royal Society of London B 277:16751683.Google Scholar
Fukami, T., Bezemer, T. M., Mortimer, S. R., and Putten, W. H. 2005. Species divergence and trait convergence in experimental plant community assembly. Ecology Letters 8:12831290.Google Scholar
Geraads, D., Bobe, R., and Reed, K. 2012. Pliocene Bovidae (Mammalia) from the Hadar Formation of Hadar and Ledi-Geraru, Lower Awash, Ethiopia. Journal of Vertebrate Paleontology 32:180197.Google Scholar
Gotelli, N. J., and Ellison, A. M. 2004. A primer of ecological statistics. Sinauer, Sunderland, Mass.Google Scholar
Hadly, E. A. 1999. Fidelity of terrestrial vertebrate fossils to a modern ecosystem. Palaeogeography, Palaeoclimatology, Palaeoecology 149:389409.Google Scholar
Haltenorth, T., and Diller, H. 1994. Larger mammals of Africa. Harper-Collins, London.Google Scholar
Harris, J. 1993. Ecosystem structure and growth of the African savanna. Global and Planetary Change 8:231248.Google Scholar
Harrison, T. 2007. Isotopic dietary reconstructions of Pliocene herbivores at Laetoli: implications for early hominin paleoecology. Palaeogeography, Palaeoclimatology, Palaeoecology 243:272306.Google Scholar
Hooper, D. U. and Vitousek, P. M. 1998. Effects of plant composition and diversity on nutrient cycling. Ecological Monographs 68:121149.CrossRefGoogle Scholar
Hunt, R. M. Jr., Xue, X. X., and Kaufman, J. 1983. Miocene burrows of extinct bear-dogs: indication of early denning behavior of large mammalian carnivores. Science 221:364–66.Google Scholar
Hurlbert, S. H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577586.Google Scholar
Jernvall, J., Hunter, J. P., and Fortelius, M. 1996. Molar tooth diversity, disparity, and ecology in Cenozoic ungulate radiations. Science 274:14891492.Google Scholar
Kanga, E. M., Webala, P., and Lala, F. 2004. Diversity and distribution of small mammals in Amboseli National Park, Kenya. Kenya Wildlife Service Report, Ecological Monitoring Unit, Lagatta, Kenya.Google Scholar
Kelt, D. A., and Meyer, M. D. 2009. Body size frequency distributions in African mammals are bimodal at all spatial scales. Global Ecology and Biogeography 18:1929.Google Scholar
Kidwell, S. M. 2001. Preservation of species abundance in marine death assemblages. Science 294:10911094.Google Scholar
Kidwell, S. M. 2002. Time-averaged molluscan death assemblages: palimpsests of richness, snapshots of abundance. Geology 30:803806.Google Scholar
Kidwell, S. M. 2007. Discordance between living and death assemblages as evidence for anthropogenic ecological change. Proceedings of the National Academy of Sciences USA 104:17,70117,706.Google Scholar
Kidwell, S. M. 2013. Time-averaging and fidelity of modern death assemblages: building a taphonomic foundation for conservation palaeobiology. Palaeontology 56:487522.CrossRefGoogle Scholar
Kidwell, S. M., and Tomašových, A. 2013. Implications of time-averaged death assemblages for ecology and conservation biology. Annual Review of Ecology, Evolution, and Systematics 44:539563. doi:10.1146/annurev-ecolsys-110512-135838.Google Scholar
Kidwell, S. M., Best, M. M. R., and Kaufman, D. 2005. Taphonomic tradeoffs in tropical marine death assemblages: differential time-averaging, shell loss, and probable bias in siliciclastic versus carbonate facies. Geology 33:729732.Google Scholar
Kingdon, J. 1971. East African mammals: an atlas of evolution in Africa, Vol. 1. Academic Press, London.Google Scholar
Kingdon, J. 1984a. East African mammals: an atlas of evolution in Africa, Vol. I. University of Chicago Press, Chicago.Google Scholar
Kingdon, J. 1984b. East African mammals: an atlas of evolution in Africa, Vol. IIA (Insectivores and Bats). University of Chicago Press, Chicago.Google Scholar
Kingdon, J. 1984c. East African mammals: an atlas of evolution in Africa, Vol. IIB (Hares and Rodents). University of Chicago Press, Chicago.Google Scholar
Kingdon, J. 1989a. East African mammals: an atlas of evolution in Africa, Vol. IIIA (Carnivores). University of Chicago Press, Chicago.Google Scholar
Kingdon, J. 1989b. East African mammals: an atlas of evolution in Africa, Vol. IIIB (Large Mammals). University of Chicago Press, Chicago.Google Scholar
Kingdon, J. 1989c. East African mammals: an atlas of evolution in Africa, Vol. IIIC (Bovids). University of Chicago Press, Chicago.Google Scholar
Kingdon, J. 1989d. East African mammals: an atlas of evolution in Africa, Vol. IIID (Bovids). University of Chicago Press, Chicago.Google Scholar
Kingdon, J. 1997. The Kingdon field guide to African mammals. Academic Press, San Diego.Google Scholar
Kosnik, M. A., Hua, Q., Jacobson, G., Kaufman, D. S., and Würst, R. A. 2009. Taphonomic bias and time-averaging in tropical molluscan death assemblages: differential shell half-lives in Great Barrier Reef sediment. Paleobiology 35:565586.Google Scholar
Kowalewski, M., and Novack-Gottshall, P. M. 2010. Resampling methods in paleontology. InAlroy, J. and Hunt, G., eds. Quantitative Methods in Paleobiology16:19–54. Paleontological Society, Lubbock, TexGoogle Scholar
Lansing, S. W., Cooper, S. M., Boydston, E. E., and Holekamp, K. E. 2009. Taphonomic and zooarchaeological implications of spotted hyena (Crocuta crocuta) bone accumulations in Kenya: a modern behavioral ecological approach. Paleobiology 35:289309.Google Scholar
Le Fur, S., Fara, E., and Vignaud, P. 2011. Effect of simulated faunal impoverishment and mixture on the ecological structure of modern mammal faunas: implications for the reconstruction of Mio-Pliocene African palaeoenvironments. Palaeogeography, Palaeoclimatology, Palaeoecology 305:295309.Google Scholar
Legendre, P., and Legendre, L. 2012. Numerical ecology. Elsevier, Amsterdam.Google Scholar
Lockwood, R., and Chastant, L. R. 2006. Quantifying taphonomic bias of compositional fidelity, species richness, and rank abundance in molluscan death assemblages from the Upper Chesapeake Bay. Palaios 21:376383.Google Scholar
Lofgren, A. S., Plotnick, R. E., and Wagner, A. P. J. 2003. Morphological diversity of Carboniferous arthropods and insights on disparity patterns through the Phanerozoic. Paleobiology 29:349368.2.0.CO;2>CrossRefGoogle Scholar
Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J. P., Hector, A., Hooper, D. U., Huston, M. A., Raffaelli, D., Schmid, B., Tilman, D., and Wardle, D. A. 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804808.Google Scholar
Lupia, R. 1999. Discordant morphological disparity and taxonomic diversity during the Cretaceous angiosperm radiation: North American pollen record. Paleobiology 25:128.Google Scholar
McGill, B., Enquist, B., Weiher, E., and Westoby, M. 2006. Rebuilding community ecology from functional traits. Trends in Ecology and Evolution 21:178185.CrossRefGoogle ScholarPubMed
Meldahl, K. H., Flessa, K. W., and Cutler, A. H. 1997. Time-averaging and postmortem skeletal survival in benthic fossil assemblages: quantitative comparisons among Holocene environments. Paleobiology 23:207229.CrossRefGoogle Scholar
Miller, A. I. 1988. Spatial resolution in subfossil molluscan remains: implications for paleobiological analyses. Paleobiology 14 (1):91103.Google Scholar
Miller, J. H. 2011. Ghosts of Yellowstone: multi-decadal histories of wildlife populations captured by bones on a modern landscape. PLoS ONE e18057. doi:10.1371/journal.pone.0018057.Google Scholar
Miller, J. H. 2012. Spatial fidelity of skeletal remains: elk wintering and calving grounds revealed by bones on the Yellowstone landscape. Ecology 93:24742482.Google Scholar
Miller, J. H., Druckenmiller, P., and Bahn, V. 2013. Antlers on the Arctic Refuge: capturing multi-generational patterns of calving ground use from bones on the landscape. Proceedings of the Royal Society of London B 280:20130275.Google Scholar
Novack-Gottshall, P. M. 2007. Using a theoretical ecospace to quantify the ecological diversity of Paleozoic and Modern marine biotas. Paleobiology 33:273294.CrossRefGoogle Scholar
Olszewski, T. D., and Kidwell, S. M. 2007. The preservational fidelity of evenness in molluscan death assemblages. Paleobiology 33:123.CrossRefGoogle Scholar
Petchey, O. L., and Gaston, K. J. 2006. Functional diversity: back to basics and looking forward. Ecology Letters 9:741758.Google Scholar
Potts, R., Shipman, P., and Ingall, E. 1987. Taphonomy, paleoecology, and hominids of Lainyamok, Kenya. Journal of Human Evolution 18:477–84.Google Scholar
R Development Core Team. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URLhttp://www.R-project.org/.Google Scholar
Reed, D. N. 2007. Serengeti micromammals and their implications for Olduvai paleoenvironments. Pp217256inBobe, R., Alemseged, A., and Behrensmeyer, A. K., eds. Hominin environments in the East African Pliocene: an assessment of the faunal evidence. Springer, Dordrecht.Google Scholar
Reed, D. N. and Denys, C. 2011. The taphonomy and paleoenvironmental implications of the Laetoli micromammals. Pp265278inHarrison, T., ed. Paleontology and geology of Laetoli: human evolution in context, Vol. I. Geology, Geochronology, Paleoecology and Paleoenvironment. Springer, Dordrecht.Google Scholar
Reed, D. N. and Geraads, D. 2012. Evidence for a late Pliocene faunal transition based on a new rodent assemblage from Oldowan locality Hadar A.L. 894, Afar Region, Ethiopia. Journal of Human Evolution 62:328337.Google Scholar
Reed, D. N., Kanga, E., and Behrensmeyer, A. K. 2006. Plio-Pleistocene paleoenvironments at Olduvai based on modern small mammals from Serengeti, Tanzania and Amboseli, Kenya. Poster presentation for the Society of Vertebrate Paleontology, Ottawa, Canada, October, 2006.Google Scholar
Reed, K. 1998. Using large mammal communities to examine ecological and taxonomic structure and predict vegetation in extant and extinct assemblages. Paleobiology 24:384408.Google Scholar
Robb, C. 2002. Missing mammals: the effects of simulated fossil preservation biases on the paleoenvironmental reconstruction of hominid sites. American Journal of Physical Anthropology 34 (132):132.Google Scholar
Shipley, B., Vile, D., and Garnier, E. 2006. From plant traits to plant communities: a statistical mechanistic approach to biodiversity. Science 314:812814.Google Scholar
Sinclair, A. R. E., and Arcese, P., eds. 1995. Serengeti II: dynamics, management, and conservation of an ecosystem. University of Chicago Press, Chicago.Google Scholar
Smith, F. A., Lyons, S. K., Ernest, S. K. M., Jones, K. E., Kaufman, D. M., Dayan, T., Marquet, P. A., Brown, J. H., and Haskell, J. P. 2003. Body mass of late Quaternary mammals. Ecology 84:3403.Google Scholar
Smith, R. M. H. 1987. Helical burrow casts of therapsid origin from the Beaufort Group (Permian) of South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 60:155170.Google Scholar
Sokal, R. R. and Rohlf, F. J. 2012. Biometry, 4th ed. Freeman, W.H., New York.Google Scholar
Soligo, C., and Andrews, P. 2005. Taphonomic bias, taxonomic, bias and historical non-equivalence of faunal structure in early hominin localities. Journal of Human Evolution 49:206229.Google Scholar
Spencer, L. M. 1995. Morphological correlates of dietary resource partitioning in the African Bovidae. Journal of Mammalogy 76:448471.Google Scholar
Stevens, R. D., Cox, S. B., Strauss, R. E., and Willig, M. R. 2003. Patterns of functional diversity across an extensive environmental gradient: vertebrate consumers, hidden treatments and latitudinal trends. Ecology Letters 6:10991108.Google Scholar
Terry, R. C. 2010a. On raptors and rodents: testing the ecological fidelity and spatiotemporal resolution of cave death assemblages. Paleobiology 36:137160.Google Scholar
Terry, R. C. 2010b. The dead do not lie: using skeletal remains for rapid assessment of historical small-mammal community baselines. Proceedings of the Royal Society of London B 277:11931201. doi:10.1126/science.1171155.Google Scholar
Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., and Siemann, E. 1997. The influence of functional diversity and composition on ecosystem processes. Science 277:13001302.Google Scholar
Tomašových, A., and Kidwell, S. M. 2009a. Fidelity of variation in species composition and diversity partitioning by death assemblages: time-averaging transfers diversity from beta to alpha levels. Paleobiology 35:94118.CrossRefGoogle Scholar
Tomašových, A., and Kidwell, S. M. 2009b. Preservation of spatial and environmental gradients by death assemblages. Paleobiology 31:119145.Google Scholar
Tomašových, A., and Kidwell, S. M. 2011. Accounting for the effects of biological variability and temporal autocorrelation in assessing the preservation of species abundance. Paleobiology 37:332354.Google Scholar
Tóth, A., Behrensmeyer, A. K., and Lyons, S. K. 2014. Mammals of Kenya's protected areas from 1888 to 2013. Ecology 95:1711. http://dx.doi.org/10.1890/13-2118.1.CrossRefGoogle Scholar
Uno, K. T., Cerling, T. E., Harris, J. M., Kunimatsu, Y., Leakey, M. G., Nakatsukasa, M., and Nakaya, H. 2011. Late Miocene to Pliocene carbon isotope record of differential diet change among East African herbivores. Proceedings of the National Academy of Sciences USA 108:65096514.Google Scholar
Van Valkenburgh, B. 1987. Skeletal indicators of locomotor behavior in living and extinct carnivores. Journal of Vertebrate Paleontology 7:162182.Google Scholar
Villéger, S. 2012. Low functional β-diversity despite high taxonomic β-diversity among tropical estuarine Fish communities. PLoS ONE 7:e40679.Google Scholar
Villéger, S., Miranda, J. R., Hernández, D. F., and Mouillot, D. 2010. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications 20:15121522.Google Scholar
Villéger, S., Novack-Gottshall, P. M., and Mouillot, D. 2011. The multidimensionality of the niche reveals functional diversity changes in benthic marine biotas across geologic time. Ecology Letters 14:561568doi. 10.1111/j.1461-0248-2011.01618.x.CrossRefGoogle Scholar
Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., and Garnier, E. 2007. Let the concept of trait be functional! Oikos 116:882892. doi:10.1111/j.2007.0030–1299.15559.x.Google Scholar
Voorhies, M. R. 1969. Taphonomy and population dynamics of an early Pliocene vertebrate fauna, Knox County, Nebraska. University of Wyoming Contributions to Geology Special Paper No. 1. Laramie, Wyoming.Google Scholar
Voorhies, M. R. 1975. Vertebrate burrows. Pp. 325350inFrey, R. W., ed. The study of trace fossils. Springer, New York.Google Scholar
Western, D. 1973. The structure, dynamics and changes of the Amboseli ecosystem. Ph.D. dissertation. University of Nairobi, Nairobi.Google Scholar
Western, D. 2006. A half a century of habitat change in Amboseli National Park, Kenya. African Journal of Ecology 45:302310.Google Scholar
Western, D., and Behrensmeyer, A. K. 2009. Bone assemblages track animal community structure over 40 years in an African savanna ecosystem. Science 324:10611064.Google Scholar
Western, D., and van Praet, C. 1973. Cyclical changes in the habitat and climate of an East African ecosystem. Nature 241:104106.Google Scholar
Westoby, M., and Wright, I. J. 2006. Land-plant ecology on the basis of functional traits. Trends in Ecology and Evolution 21:261268.Google Scholar
Williams, J. G. 1967. A field guide to the national parks of East Africa. Collins, London.Google Scholar
Willig, M. R., Kaufman, D. M., and Stevens, R. D. 2003. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology and Systematics 34:273309.Google Scholar