Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T09:55:23.389Z Has data issue: false hasContentIssue false

Correlated trends in the evolution of the plesiosaur locomotor system

Published online by Cambridge University Press:  08 April 2016

F. Robin O'Keefe
Affiliation:
Department of Anatomy, NYCOM II, Room 326, New York College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York 11568. E-mail: frokeefe@nyit.edu
Matthew T. Carrano
Affiliation:
Department of Paleobiology, Post Office Box 37012, MRC 121, Smithsonian Institution, Washington, D.C. 20013-7012. E-mail: Carrano.Matthew@nmnh.si.edu

Abstract

This paper investigates trends in the evolution of body size and shape in the Plesiosauria, a diverse clade of Mesozoic marine reptiles. Using measures from well-preserved plesiosaur specimens, we document and interpret evolutionary patterns in relative head size, body size, and locomotor variables. Size increase is a significant trend in the clade as a whole, and in constituent clades. The trend in relative head size is of variance increase; observed head sizes are both smaller and larger than ancestral values. In the locomotor system, changes in propodial and girdle proportions appear concomitant with body size increase and are interpreted as allometric responses to the physical constraints of large body size. Other trends in the locomotor system are significantly correlated with both body size and relative head size. These locomotor trends evolved convergently in several clades of plesiosaurs, and may have had an ecomorphological basis, although data are lacking to constrain speculation on this point. The evolution of the locomotor system in plesiosaurs sheds new light on the response of aquatic tetrapods to the physical constraints of foraging at large body size.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alexander, R. M. 1989. Dynamics of dinosaurs and other extinct giants. Columbia University Press, New York.Google Scholar
Alexander, R. M., Jayes, A. S., Maloiy, G. M. O., and Wathuta, E. M. 1979. Allometry of limb bones of mammals from shrews (Sorex) to elephant (Loxodonta). Journal of Zoology 189:305314.CrossRefGoogle Scholar
Alroy, J. 1998. Cope's Rule and the dynamics of body mass evolution in the North American fossil mammals. Science 280:731734.CrossRefGoogle ScholarPubMed
Bardet, N. 1998. A preliminary cladistic analysis of the Plesiosauria. Journal of Vertebrate Paleontology 18(Suppl. to No. 3):26A.Google Scholar
Biewener, A. A. 1990. Mammalian terrestrial locomotion and size: mechanical design principles define limits. Bioscience 39:776783.CrossRefGoogle Scholar
Biewener, A. A. 2000. Scaling of terrestrial support: differing solutions to mechanical constraints of size. Pp. 5166 in Brown, J. H. and West, G. B., eds. Scaling in biology. Oxford University Press, New York.Google Scholar
Bookstein, F., Chernoff, B., Elder, R., Humphries, J., Smith, G., and Strauss, R. 1985. Morphometrics in evolutionary biology. Academy of Natural Sciences of Philadelphia Special Publication 15.Google Scholar
Brown, D. S. 1981. The English Upper Jurassic Plesiosauroidea (Reptilia) and a review of the phylogeny and classification of the Plesiosauria. Bulletin of the British Museum (Natural History), Geology 35:253347.Google Scholar
Brown, D. S., and Cruickshank, A. R. I. 1994. The skull of the Callovian plesiosaur Cryptoclidus eurymerus and the sauropterygian cheek. Palaeontology 37:941953.Google Scholar
Bryant, H. N., and Russell, K. L. 1990. Observations and comments on the reliability of muscle reconstruction in fossil vertebrates. Journal of Morphology 206:109117.CrossRefGoogle ScholarPubMed
Caldwell, M. W. 1997a. Limb osteology and ossification patterns in Cryptoclidus (Reptilia: Plesiosauroidea) with a review of sauropterygian limbs. Journal of Vertebrate Paleontology 17:295307.CrossRefGoogle Scholar
Caldwell, M. W. 1997b. Modified perichondral ossification and the evolution of paddlelike limbs in ichthyosaurs and plesiosaurs. Journal of Vertebrate Paleontology 17:534547.CrossRefGoogle Scholar
Carpenter, K. 1997. Comparative cranial anatomy of two North American Cretaceous plesiosaurs. Pp. 191216 in Callaway, J. M. and Nicholls, E. L., eds. Ancient marine reptiles. Academic Press, San Diego.CrossRefGoogle Scholar
Carrano, M. T. 1999. What, if anything, is a cursor? Categories versus continua for determining locomotor habit in dinosaurs and mammals. Journal of Zoology 247:2942.CrossRefGoogle Scholar
Carrano, M. T. 2000. Homoplasy and the evolution of dinosaur locomotion. Paleobiology 26:489512.2.0.CO;2>CrossRefGoogle Scholar
Carrano, M. T. 2001. Implications of limb bone scaling, curvature and eccentricity in mammals and non-avian dinosaurs. Journal of Zoology 254:4155.CrossRefGoogle Scholar
Carrano, M. T. 2005. Body-size evolution in the Dinosauria. In Carrano, M. T., Gaudin, T. J., Blob, R. W., and Wible, J. R., eds. Amniote paleobiology: perspectives on the evolution of mammals, birds, and reptiles. University of Chicago Press, Chicago (in press).Google Scholar
Carroll, R. T. 1985. Evolutionary constraints in aquatic diapsid reptiles. Papers in Palaeontology 33:145155.Google Scholar
Carroll, R. T. 1988. Vertebrate paleontology and evolution. W. H. Freeman, New York.Google Scholar
Cubo, J., and Casinos, A. 1994. Scaling of skeletal element mass in birds. Belgian Journal of Zoology 124:127137.Google Scholar
Daniel, T. L., and Webb, P. W. 1987. Physical determinants of locomotion. Pp. 343369 in Dejours, P., Bolis, L., Taylor, C. R., and Weibel, E. R., eds. Comparative physiology: life on water and on land. Liviana, New York.Google Scholar
de Blainville, H. D. 1835. Description de quelques espèces de reptiles de la Californie, précédée de l'analyse d'un système general d'Erpetologie et d'Amphibiologie. Nouvelles Annales du Muséum (National) d'Histoire Naturelle, Paris, 4:233296.Google Scholar
Dickinson, M. H. 1996. Unsteady mechanisms of force generation in aquatic and aerial locomotion. American Zoologist 36:537554.CrossRefGoogle Scholar
Dickinson, M. H., Lehmann, F.-O., and Sane, S. P. 1999. Wing rotation and the aerodynamic basis of flight. Science 284:19541960.CrossRefGoogle Scholar
Druckenmiller, P. S. 2002. Osteology of a new plesiosaur from the Lower Cretaceous (Albian) Thermopolis Shale of Montana. Journal of Vertebrate Paleontology 22:2942.CrossRefGoogle Scholar
English, A. W. 1976. Limb movements and locomotor function in the California sea lion. Journal of Zoology 178:341364.CrossRefGoogle Scholar
Feldkamp, S. D. 1987a. Foreflipper propulsion in the California sea lion, Zalophus californianus . Journal of Zoology 212:4357.CrossRefGoogle Scholar
Feldkamp, S. D. 1987b. Swimming in the California sea lion: morphometrics, drag, and energetics. Journal of Experimental Biology 131:117135.CrossRefGoogle ScholarPubMed
Felsenstein, J. 1985. Phylogenies and the comparative method. American Naturalist 125:115.CrossRefGoogle Scholar
Godfrey, S. J. 1984. Plesiosaur subaqueous locomotion: a reappraisal. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 11:661672.CrossRefGoogle Scholar
Gregory, W. K. 1912. Notes on the principles of quadrupedal locomotion and on the mechanism of the limbs in hoofed animals. Annals of the New York Academy of Sciences 22:287294.CrossRefGoogle Scholar
Harvey, P. H., and Pagel, M. D. 1991. The comparative method in evolutionary biology. Oxford University Press, Oxford.CrossRefGoogle Scholar
Jolicoeur, P. 1963. The multivariate generalization of the allometry equation. Biometrics 19:497499.CrossRefGoogle Scholar
Jungers, W. L., Falsetti, A. B., and Wall, C. E. 1995. Shape, relative size, and size-adjustment in morphometrics. Yearbook of Physical Anthropology 38:137161.CrossRefGoogle Scholar
Lauder, G. V. 1995. On the inference of function from structure. Pp. 118 in Thomason, J. J., ed. Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge.Google Scholar
Lingham-Soliar, T. 2000. Plesiosaur locomotion: is the four-flipper problem real or merely an atheoretical exercise? Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 217:4587.CrossRefGoogle Scholar
Massare, J. A. 1988. Swimming capabilities of Mesozoic marine reptiles: implications for methods of predation. Paleobiology 14:187205.CrossRefGoogle Scholar
McShea, D. W. 1994. Mechanisms of large-scale evolutionary trends. Evolution 48:17471763.CrossRefGoogle ScholarPubMed
McShea, D. W. 1998. Possible largest-scale trends in organismal evolution: eight “live hypotheses.” Annual Review of Ecology and Systematics 29:293318.CrossRefGoogle Scholar
Mosimann, J. E. 1970. Size allometry: size and shape variables with characterizations of the lognormal and generalized gamma distributions. Journal of the American Statistical Association 65:930945.CrossRefGoogle Scholar
Mosimann, J. E., and Malley, J. D. 1979. Size and shape variables. Pp. 175189 in Orioci, L., Rao, C. R., and Stiteler, W. M., eds. Multivariate methods in ecological work. International Cooperative Publishing House, Fairland, Md. Google Scholar
O'Keefe, F. R. 2001a. A cladistic analysis and taxonomic revision of the Plesiosauria (Reptilia: Sauropterygia). Acta Zoologici Fennici 213:163.Google Scholar
O'Keefe, F. R. 2001b. Ecomorphology of plesiosaur flipper geometry. Journal of Evolutionary Biology 14:987991.CrossRefGoogle Scholar
O'Keefe, F. R. 2002. The evolution of plesiosaur and pliosaur morphotypes in the Plesiosauria (Reptilia: Sauropterygia). Paleobiology 28:101112.2.0.CO;2>CrossRefGoogle Scholar
O'Keefe, F. R. 2003. Preliminary report on the osteology and relationships of a new aberrant cryptocleidoid plesiosaur from the Sundance Formation, Wyoming. Paludicola 4(2):4868.Google Scholar
O'Keefe, F. R. 2004. Preliminary description and phylogenetic position of a new plesiosaur (Reptilia: Sauropterygia) from the Toarcian of Holzmaden, Germany. Journal of Paleontology 78:973988.2.0.CO;2>CrossRefGoogle Scholar
O'Keefe, F. R., Rieppel, O., and Sander, P. M. 1999. Shape disassociation and inferred heterochrony in a clade of pachypleurosaurs (Reptilia, Sauropterygia). Paleobiology 25:504517.CrossRefGoogle Scholar
Osborn, H. F. 1917. The origin and evolution of life. Charles Scribner's Sons, New York.CrossRefGoogle Scholar
Owen, R. 1860. Palaeontology, or a systematic summary of extinct animals and their geological relations. Adam and Charles Black, Edinburgh.Google Scholar
Persson, P. O. 1963. A revision of the classification of the Plesiosauria with a synopsis of the stratigraphical and geological distribution of the group. Lunds Universites Årsskrift, Avrd. 2, 59:157.Google Scholar
Price, T. 1997. Correlated evolution and independent contrasts. Philosophical Transactions of the Royal Society of London B 352:519529.CrossRefGoogle ScholarPubMed
Purvis, A., and Rambaut, A. 1995. Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data. Computer Applications for the Biosciences 11:247251.Google ScholarPubMed
Rayner, J. M. V., Thomas, G., and Thomas, A. L. R. 1986. Vortex flow visualizations reveal change in upstroke function with flight speed in bats. Nature 321:162164.CrossRefGoogle Scholar
Reyment, R. A. 1991. Multidimensional paleobiology. Pergamon, Oxford.Google Scholar
Reyment, R. A., and Jöreskog, K. G. 1996. Applied factor analysis in the natural sciences. Cambridge University Press.Google Scholar
Rieppel, O. 2000. Sauropterygia. I. Placodontia, Pachypleurosauria, Nothosauroidea, Pistosauroidea. Pp. 1134 in Kuhn, O. and Wellnhofer, P., eds. Encyclopedia of paleoherpetology, Part 12A. Friedrich Pfeil, Munich.Google Scholar
Riess, J., and Frey, E. 1994. The evolution of underwater flight and the locomotion of plesiosaurs. Pp. 131144 in Rayner, J. M. V. and Wootton, R. J., eds. Biomechanics in Evolution. Cambridge University Press, Cambridge.Google Scholar
Robinson, J. A. 1975. The locomotion of plesiosaurs. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 149:286332.Google Scholar
Robinson, J. A. 1977. Intracorporal force transmission in plesiosaurs. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 153:86128.Google Scholar
Romer, A. S. 1956. Osteology of the reptiles. University of Chicago Press, Chicago.Google Scholar
Schafer, J. L. 1997. Analysis of incomplete multivariate data. Monographs in Statistics and Applied Probability 72. Chapman and Hall, London.Google Scholar
Shevell, R. S. 1989. Fundamentals of flight, 2d ed. Prentice Hall, Englewood Cliffs, NJ.Google Scholar
Sidor, C. A. 2001. Simplification as a trend in synapsid cranial evolution. Evolution 55:14191442.Google ScholarPubMed
Sidor, C. A. 2003. Evolutionary trends and the origin of the mammalian lower jaw. Paleobiology 29:605640.2.0.CO;2>CrossRefGoogle Scholar
Sokal, R. R., and Rohlf, F. J. 1995. Biometry, 3d ed. W. H. Freeman, New York.Google Scholar
Spedding, G. R. 1993. The aerodynamics of flight. In Alexander, R. M., ed. Mechanics of animal locomotion. Advances in Comparative Environmental Physiology 11:5978. Springer, Berlin.Google Scholar
Srygley, R. B., and Thomas, L. R. 2002. Unconventional lift-generating mechanisms in free-flying butterflies. Science 420:660664.Google ScholarPubMed
Stanley, S. M. 1973. An explanation for Cope's Rule. Evolution 27:126.CrossRefGoogle ScholarPubMed
Storrs, G. W. 1991. Anatomy and relationships of Corosaurus alcovensis (Diapsida: Sauropterygia) and the Triassic Alcova Limestone of Wyoming. Bulletin of the Peabody Museum of Natural History 44:1151.Google Scholar
Storrs, G. W. 1993. Function and phylogeny in sauropterygian (Diapsida) evolution. American Journal of Science 293A:6390.CrossRefGoogle Scholar
Tarlo, L. B. H. 1958. The scapula of Pliosaurus macromerus Phillips. Palaeontology 1:193199.Google Scholar
Tarsitano, S., and Riess, J. 1982. Plesiosaur locomotion—underwater flight versus rowing. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 164:188192.CrossRefGoogle Scholar
Taylor, M. A. 1981. Plesiosaurs—rigging and ballasting. Nature 290:628629.CrossRefGoogle Scholar
Taylor, M. A. 1986. Lifestyle of plesiosaurs. Nature 319:179.CrossRefGoogle Scholar
Taylor, M. A. 1997. Before the dinosaur: the historical significance of the fossil marine reptiles. Pp. xixxlvi in Callaway, J. M. and Nicholls, E. L., eds. Ancient marine reptiles. Academic Press, San Diego.CrossRefGoogle Scholar
Vogel, S. 1988. Life's devices: the physical world of animals and plants. Princeton University Press, Princeton, NJ. Google Scholar
Vogel, S. 1994. Life in moving fluids, 2d ed. Princeton University Press, Princeton, N.J. Google Scholar
Walker, W. F., and Liem, K. F. 1994. Functional anatomy of the vertebrates: an evolutionary perspective, 2d ed. Saunders College Publishing, Fort Worth, Texas.Google Scholar
Webb, P. W. 1988. Simple physical principles and vertebrate aquatic locomotion. American Zoologist 28:709725.CrossRefGoogle Scholar
Welles, S. P. 1962. A new species of elasmosaur from the Aptian of Colombia and a review of the Cretaceous plesiosaurs. University of California Publications in Geological Sciences 44:196.Google Scholar
Williston, S. W. 1914. Water reptiles of the past and present. University of Chicago Press, Chicago.CrossRefGoogle Scholar