Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T04:20:53.462Z Has data issue: false hasContentIssue false

Mixed Spectral and Pseudospectral Methods for a Nonlinear Strongly Damped Wave Equation in an Exterior Domain

Published online by Cambridge University Press:  28 May 2015

Zhong-Qing Wang*
Affiliation:
Department of Mathematics, Shanghai Normal University, Shanghai, 200234, P. R. China Scientific Computing Key Laboratory of Shanghai Universities Division of Computational Science of E-institute of Shanghai Universities
Rong Zhang*
Affiliation:
Department of Mathematics, Shanghai Normal University, Shanghai, 200234, P. R. China Scientific Computing Key Laboratory of Shanghai Universities Division of Computational Science of E-institute of Shanghai Universities
*
Corresponding author.Email address:zqwang@shnu.edu.cn
Corresponding author.Email address:zhangrong0716@163.com
Get access

Abstract

The aim of this paper is to develop the mixed spectral and pseudospectral methods for nonlinear problems outside a disc, using Fourier and generalized Laguerre functions. As an example, we consider a nonlinear strongly damped wave equation. The mixed spectral and pseudospectral schemes are proposed. The convergence is proved. Numerical results demonstrate the efficiency of this approach.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bergh, J. and Löfström, J., Interpolation Spaces, An Introduction, Spring-Verlag, Berlin, 1976.CrossRefGoogle Scholar
[2]Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T. A., Spectral Methods, Fundamentals in Single Domains, Springer-Verlag, Berlin, 2006.CrossRefGoogle Scholar
[3]Funaro, D., Polynomial Approxiamtions of Differential Equations, Springer-Verlag, Berlin, 1992.CrossRefGoogle Scholar
[4]Guo, B.-Y., Error estimation of Hermite spectral method for nonlinear partial differential equations, Math. Comp., 68 (1999), pp. 10671078.CrossRefGoogle Scholar
[5]Guo, B.-Y., Spectral Methods and Their Applications, World Scientific, Singapore, 1998.CrossRefGoogle Scholar
[6]Guo, B.-Y. and Shen, J., Laguerre-Galerkin method for nonlinear partial differential equations on a semi-infinite interval, Numer. Math., 86 (2000), pp. 635654.CrossRefGoogle Scholar
[7]Guo, B.-Y., Shen, J. and Xu, C.-L., Generalized Laguerre approximation and its applations to exterior problems, J. Comp. Math., 23 (2005), pp. 113130.Google Scholar
[8]Guo, B.-Y., Wang, L.-L. and Wang, Z.-Q., Generalized Laguerre interpolation and pseudospectral method for unbound domains, SIAM J. Numer. Anal, 43 (2006), pp. 25672589.Google Scholar
[9]Guo, B.-Y. and Zhang, X.-Y., A new generalized Laguerre interpolation and its applications, J. Comp. Appl. Math., 181 (2005), pp. 342363.Google Scholar
[10]Guo, B.-Y. and Zhang, X.-Y., Spectral method for differential equations of degenerate type on unbounded domains by using generalized Laguerre functions, Appl. Numer. Math., 57 (2007), pp. 455471.CrossRefGoogle Scholar
[11]Ikehata, R., Decay estimates of solutions for the wave equations with strong damping terms in unbounded domains, Math. Meth. Appl. Sci., 24 (2001), pp. 659670.CrossRefGoogle Scholar
[12]Maday, Y., Pernaud-Thomas, B. and Vandeven, H., Une réehabilitation des méthodes spéctrales de type Laguerre, Rech. Aerospat., 6 (1985), pp. 353379.Google Scholar
[13]Mastroianni, G. and Monegato, G., Nyström interpolants based on zeros of Laguerre polynomials for some Wiener-Hopf equations, IMA J. Numer. Anal., 17 (1997), pp. 621642.CrossRefGoogle Scholar
[14]Mastroanni, G. and Occorsio, D., Lagrange interpolation at Laguerre zeros in some weighted uniform spaces, Acta Math. Hungar, 91 (2001), pp. 2752.CrossRefGoogle Scholar
[15]Pata, V. and Zelik, S., Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), pp. 14951506.CrossRefGoogle Scholar
[16]Wang, Z.-Q., Guo, B.-Y. and Wu, Y.-N., Pseudospectral method using generalized Laguerre functions for singular problem on unbounded domains, Disc. Cont. Dyn. Sys. B, 11 (2009), pp. 10191038.Google Scholar
[17]Wang, Z.-Q., Guo, B.-Y. and Zhang, W., Mixed spectral method for three-dimensional exterior problems using spherical harmonic and generalized Laguerre functions, J. Comp. Appl. Math., 217 (2008), pp. 277298.CrossRefGoogle Scholar
[18]Zhang, R., Wang, Z.-Q. and Guo, B.-Y., Mixed Fourier-Laguerre spectral and pseudospectral methods for exterior problems using generalized Laguerre functions, J. Sci. Comp., 36 (2008), pp. 263283.CrossRefGoogle Scholar
[19]Zhang, X.-Y. and Guo, B.-Y., Spherical harmonic-generalized Laguerre spectral method for exterior problems, J. Sci. Comp., 27 (2006), pp. 523537.Google Scholar