Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T12:46:50.599Z Has data issue: false hasContentIssue false

Learning Non-Negativity Constrained Variation for Image Denoising and Deblurring

Published online by Cambridge University Press:  12 September 2017

Tengda Wei*
Affiliation:
College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
Linshan Wang*
Affiliation:
College of Mathematics, Ocean University of China, Qingdao 266100, China
Ping Lin*
Affiliation:
Department of Mathematics, University of Dundee, Dundee DD1 4HN, UK
Jialing Chen*
Affiliation:
Department of Mathematics, University of Dundee, Dundee DD1 4HN, UK
Yangfan Wang*
Affiliation:
College of Marine Life Science, Ocean University of China, Qingdao 266100, China
Haiyong Zheng*
Affiliation:
College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China
*
*Corresponding author. Email addresses:tdwei123@163.com (T. Wei), wangls@ouc.edu.cn (L. Wang), plin@maths.dundee.ac.uk (P. Lin), j.z.chen@dundee.ac.uk (J. Chen), yfwang@ouc.edu.cn (Y. Wang), zhenghaiyong@ouc.edu.cn (H. Zheng)
*Corresponding author. Email addresses:tdwei123@163.com (T. Wei), wangls@ouc.edu.cn (L. Wang), plin@maths.dundee.ac.uk (P. Lin), j.z.chen@dundee.ac.uk (J. Chen), yfwang@ouc.edu.cn (Y. Wang), zhenghaiyong@ouc.edu.cn (H. Zheng)
*Corresponding author. Email addresses:tdwei123@163.com (T. Wei), wangls@ouc.edu.cn (L. Wang), plin@maths.dundee.ac.uk (P. Lin), j.z.chen@dundee.ac.uk (J. Chen), yfwang@ouc.edu.cn (Y. Wang), zhenghaiyong@ouc.edu.cn (H. Zheng)
*Corresponding author. Email addresses:tdwei123@163.com (T. Wei), wangls@ouc.edu.cn (L. Wang), plin@maths.dundee.ac.uk (P. Lin), j.z.chen@dundee.ac.uk (J. Chen), yfwang@ouc.edu.cn (Y. Wang), zhenghaiyong@ouc.edu.cn (H. Zheng)
*Corresponding author. Email addresses:tdwei123@163.com (T. Wei), wangls@ouc.edu.cn (L. Wang), plin@maths.dundee.ac.uk (P. Lin), j.z.chen@dundee.ac.uk (J. Chen), yfwang@ouc.edu.cn (Y. Wang), zhenghaiyong@ouc.edu.cn (H. Zheng)
*Corresponding author. Email addresses:tdwei123@163.com (T. Wei), wangls@ouc.edu.cn (L. Wang), plin@maths.dundee.ac.uk (P. Lin), j.z.chen@dundee.ac.uk (J. Chen), yfwang@ouc.edu.cn (Y. Wang), zhenghaiyong@ouc.edu.cn (H. Zheng)
Get access

Abstract

This paper presents a heuristic Learning-based Non-Negativity Constrained Variation (L-NNCV) aiming to search the coefficients of variational model automatically and make the variation adapt different images and problems by supervised-learning strategy. The model includes two terms: a problem-based term that is derived from the prior knowledge, and an image-driven regularization which is learned by some training samples. The model can be solved by classical ε-constraint method. Experimental results show that: the experimental effectiveness of each term in the regularization accords with the corresponding theoretical proof; the proposed method outperforms other PDE-based methods on image denoising and deblurring.

Type
Research Article
Copyright
Copyright © Global-Science Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Aubert, G. and Kornprobst, P., Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, Springer-Verlag, New York, USA, 2006.CrossRefGoogle Scholar
[2] Bauschke, H. H., Burachik, R., Combettes, P. L., Elser, V., Luke, D. R. and Wolkowicz, H., Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer Science and Business Media, 2011.Google Scholar
[3] Beck, A. and Teboulle, M., Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems, IEEE Trans. Image Process., 18 (2009), pp. 24192434.Google Scholar
[4] Becker, S. and Fadili, J., A quasi-newton proximal splitting method, in NIPS, 2012, pp. 26182626.Google Scholar
[5] Boyd, S. and Vandenberghe, L., Convex Optimization, Cambridge University Press, New York, USA, 2004.Google Scholar
[6] Cai, J. F., Chan, R. H. and Shen, Z., A framelet-based image inpainting algorithm, Appl. Comput. Harmon. Anal., 24 (2008), pp. 131149.Google Scholar
[7] Canny, J., A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell., 8 (1986), pp. 679698.Google Scholar
[8] Chambolle, A. and Lions, P. L., Image recovery via total variation minimization and related problems, Numer. Math., 76 (1997), pp. 167188.Google Scholar
[9] Chambolle, A. and Pock, T., A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis., 40 (2011), pp. 120145.CrossRefGoogle Scholar
[10] Chan, R. H., Wen, Y. W. and Yip, A. M., A fast optimization transfer algorithm for image inpainting in wavelet domains, IEEE Trans. Image Process., 18 (2009), pp. 14671476.CrossRefGoogle ScholarPubMed
[11] Chan, T. F., Esedoglu, S. and Nikolova, M., Algorithms for finding global minimizers of image segmentation and denoising models, SIAM J. Appl. Math., 66 (2006), pp. 16321648.Google Scholar
[12] Chan, T. F., Golub, G. H. and Mulet, P., A nonlinear primal-dual method for total variation-based image restoration, SIAM J. Sci. Comput., 20 (1999), pp. 19641977.CrossRefGoogle Scholar
[13] Chan, T. F., Ng, M. K., Yau, A. C. and Yip, A. M., Superresolution image reconstruction using fast inpainting algorithms, Appl. Comput. Harmon. Anal., 23 (2007), pp. 324.CrossRefGoogle Scholar
[14] Chan, T. F. and Shen, J., Variational image inpainting, Commun. Pure Appl. Math., 58 (2005), pp. 579619.Google Scholar
[15] Chan, T. F., Shen, J. and Zhou, H. M., Total variation wavelet inpainting, J. Math. Imaging Vis., 25 (2006), pp. 107125.CrossRefGoogle Scholar
[16] Chan, T. F. and Vese, L. A., Active contours without edges, IEEE Trans. Image Process., 10 (2001), pp. 266277.Google Scholar
[17] Chartrand, R. and Wohlberg, B., Total-variation regularization with bound constraints, in IEEE ICASSP, 2010, pp. 766769.Google Scholar
[18] Chen, X., Ng, M. K. and Zhang, C., Non-Lipschitz lp-regularization and box constrained model for image restoration, IEEE Trans. Image Process., 21 (2012), pp. 47094721.Google Scholar
[19] Chen, Y., Yu, W. and Pock, T., On learning optimized reaction diffusion processes for effective image restoration, in IEEE CVPR, 2015, pp. 8790.Google Scholar
[20] Dey, N., Blanc-Féraud, L., Zimmer, Z. K. C., Olivo-Marin, J. C. and Zerubia, J., A deconvolution method for confocal microscopy with total variation regularization, in IEEE Intern. Symp. on Biomedical Imaging: Macro to Nano, 2004, pp. 12231226.Google Scholar
[21] Esser, E., Zhang, X. and Chan, T. F., A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science, SIAM J. Imaging Sci., 3 (2010), pp. 10151046.Google Scholar
[22] Goldstein, T. and Osher, S., The split bregman method for l1-regularized problems, SIAM J. Imaging Sci., 2 (2009), pp. 323343.Google Scholar
[23] Haimes, Y. Y., Lasdon, L. S. and Wismer, D. A., On a bicriterion formulation of the problems of integrated system identification and system optimization, IEEE Trans. Syst. Man Cyber., 1 (1971), pp. 296297.Google Scholar
[24] Hintermüller, M., Ito, K. and Kunisch, K., The primal-dual active set strategy as a semismooth Newtons method, SIAM J. Optim., 13 (2003), pp. 865888.Google Scholar
[25] Krishnan, D., Lin, P. and Yip, A. M., A primal-dual active-set method for non-negativity constrained total variation deblurring problems, IEEE Trans. Image Process., 16 (2007), pp. 27662777.Google Scholar
[26] Krishnan, D., Pham, Q. V. and Yip, A. M., A primal dual active set algorithm for bilaterally constrained total variation deblurring and piecewise constant Mumford-Shah segmentation problems, Adv. Comput. Math., 31 (2009), pp. 237266.CrossRefGoogle Scholar
[27] Larson, E. C. and Chandler, D. M., Most apparent distortion: full-reference image quality assessment and the role of strategy, J. Electron. Imaging, 19 (2010), 011006.Google Scholar
[28] Law, Y. N., Lee, H. K. and Yip, A. M., A multi-resolution stochastic level set method for Mumford-Shah image segmentation, IEEE Trans. Image Process., 17 (2008), pp. 22892300.Google Scholar
[29] Liu, R., Lin, Z., Zhang, W. and Su, Z., Learning PDEs for Image Restoration via Optimal Control, in ECCV, 2010, pp. 115128.Google Scholar
[30] Martin, D., Fowlkes, C., Tal, D. and Malik, J., A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, in IEEE ICCV, 2001.Google Scholar
[31] Mersereau, R. M. and Schafer, R. W., Comparative study of iterative deconvolution algorithms, in IEEE ICASSP, 1978, pp. 192195.Google Scholar
[32] Morel, J. M. and Solimini, S., Variational Methods in Image Segmentation, Birkhauser Boston Inc., Cambridge, USA, 1995.Google Scholar
[33] Paragios, N., Chen, Y. and Faugeras, O. D., Handbook of Mathematical Models in Computer Vision, Springer Science and Business Media, 2006.CrossRefGoogle Scholar
[34] Persson, M., Bone, D. and Elmqvist, H., Total variation norm for three-dimension iterative reconstruction in limited view angle tomography, Phys. Med. Biol., 46 (2001), pp. 853866.Google Scholar
[35] Ponomarenko, N., Jin, L., Ieremeiev, O., Lukin, V., Egiazarian, K., Astola, J., Vozel, B., Chehdi, K., Carli, M., Battisti, F. et al., Image database TID2013: peculiarities, results and perspectives, Signal Process. Image Commun., 30 (2015), pp. 5777.Google Scholar
[36] Rudin, L. I., Osher, S. and Fatemi, E., Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259268.Google Scholar
[37] Schafer, R. W., Mersereau, R. M. and Richards, M. A., Constrained iterative restoration algorithms, Proc. IEEE, 69 (1981), pp. 432450.Google Scholar
[38] Scherzer, O., Handbook of Mathematical Methods in Imaging, Springer-Verlag, New York, USA, 2011.Google Scholar
[39] Sheikh, H. R., Sabir, M. F. and Bovik, A. C., A statistical evaluation of recent full reference image quality assessment algorithms, IEEE Trans. Image Process., 15 (2006), pp. 34403451.Google Scholar
[40] Tai, C., Zhang, X. and Shen, Z., Wavelet frame based multiphase image segmentation, SIAM J. Imaging Sci., 6 (2013), pp. 25212546.Google Scholar
[41] Tai, X. C., Lie, K. A., Chan, T. F. and Osher, S., Image Processing Based on Partial Differential Equations, Springer-Verlag, New York, USA, 2007.Google Scholar
[42] Tai, X. C., Mørken, K., Lysaker, M. and Lie, K. A., Scale Space and Variational Methods in Computer Vision, Springer Berlin Heidelberg, 2009.CrossRefGoogle Scholar
[43] Tikhonov, A. N. and Arsenin, V. Y., Solutions of Ill-Posed Problems, Winston and Sons, Washington, D. C., 1977.Google Scholar
[44] Vogel, C. R., Computational Methods for Inverse Problems, SIAM, Philadelphia, USA, 2002.Google Scholar
[45] Weickert, J., Ishikawa, S. and Imiya, A., Linear scale-space has first been proposed in Japan, J. Math. Imaging Vis., 10 (1999), pp. 237252.Google Scholar
[46] Wu, C. and Tai, X. C., Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Sci., 3 (2010), pp. 300339.Google Scholar
[47] You, Y. L. and Kaveh, M., Blind image restoration by anisotropic regularization, IEEE Trans. Image Process., 8 (1999), pp. 396407.Google Scholar