Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T23:27:13.589Z Has data issue: false hasContentIssue false

Algebraic Theory of Two-Grid Methods

Published online by Cambridge University Press:  28 May 2015

Yvan Notay*
Affiliation:
Université Libre de Bruxelles, Service de Métrologie Nucléaire (C.P. 165-84), 50 Av. F.D.Roosevelt, B-1050 Brussels, Belgium
*
*Email addresses: ynotay@ulb.ac.be (Yvan Notay) Yvan Notay is Research Director of the Fonds de la Recherche Scientifique - FNRS
Get access

Abstract

About thirty years ago, Achi Brandt wrote a seminal paper providing a convergence theory for algebraic multigrid methods [Appl. Math. Comput., 19 (1986), pp. 23–56]. Since then, this theory has been improved and extended in a number of ways, and these results have been used in many works to analyze algebraic multigrid methods and guide their developments. This paper makes a concise exposition of the state of the art. Results for symmetric and nonsymmetric matrices are presented in a unified way, highlighting the influence of the smoothing scheme on the convergence estimates. Attention is also paid to sharp eigenvalue bounds for the case where one uses a single smoothing step, allowing straightforward application to deflation-based preconditioners and two-level domain decomposition methods. Some new results are introduced whenever needed to complete the picture, and the material is self-contained thanks to a collection of new proofs, often shorter than the original ones.

Type
Research Article
Copyright
Copyright © Global-Science Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Axelsson, O., Iterative Solution Methods, Cambridge University Press, Cambridge, UK, 1994.CrossRefGoogle Scholar
[2]Baker, A.H., Falgout, R.D., Kolev, T.V., and Yang, U.M., Multigrid smoothers for ultraparallel computing, SIAM J. Sci. Comput., 33 (2011), pp. 28642887.CrossRefGoogle Scholar
[3]Bank, R. and Douglas, C., Sharp estimates for multigrid rates of convergence with general smoothing and acceleration, SIAM J. Numer. Anal., 22 (1985), pp. 617633.CrossRefGoogle Scholar
[4]Bank, R.E., Dupont, T.F., and Yserentant, H., The hierarchical basis multigrid method, Numer. Math., 52 (1988), pp. 427458.CrossRefGoogle Scholar
[5]Bramble, J.H., Pasciak, J.E., Wang, J., and Xu, J., Convergence estimates for product iterative methods with applications to domain decomposition, Math. Comp., 57 (1991), pp. 121.CrossRefGoogle Scholar
[6]Brandt, A., Algebraic multigrid theory: The symmetric case, Appl. Math. Comput., 19 (1986), pp. 2356.Google Scholar
[7]Brandt, A., General highly accurate algebraic coarsening, Electron. Trans. Numer. Anal., 10 (2000), pp. 120.Google Scholar
[8]Brandt, A., McCormick, S.F., and Ruge, J.W., Algebraic multigrid (AMG) for sparse matrix equations, in Sparsity and its Application, Evans, D.J., ed., Cambridge University Press, Cambridge, 1984, pp. 257284.Google Scholar
[9]Brannick, J.J. and Falgout, R.D., Compatible relaxation and coarsening in algebraic multigrid, SIAM J. Sci. Comput., 32 (2010), pp. 13931416.CrossRefGoogle Scholar
[10]Brezina, M., Cleary, A.J., Falgout, R.D., Henson, V.E., Jones, J.E., Manteuffel, T.A., McCormick, S.F., and Ruge, J.W., Algebraic multigrid based on element interpolation (AMGe), SIAM J. Sci. Comput., 22 (2000), pp. 15701592.CrossRefGoogle Scholar
[11]Brezina, M., Falgout, R., Maclachlan, S., Manteuffel, T., McCormick, S., and Ruge, J., Adaptive smoothed aggregation (αSA), SIAM Review, 47 (2005), pp. 317346.CrossRefGoogle Scholar
[12]Brezina, M., Ketelsen, C., Manteuffel, T., McCormick, S., Park, M., and Ruge, J., Relaxation-corrected bootstrap algebraic multigrid (rBAMG), Numer. Linear Algebra Appl., 19 (2012), pp. 178193.CrossRefGoogle Scholar
[13]Brezina, M., Manteuffel, T., McCormick, S., Ruge, J., and Sanders, G., Towards adaptive smoothed aggregation (αSA) for nonsymmetric problems, SIAM J. Sci. Comput., 32 (2010), pp. 1439.CrossRefGoogle Scholar
[14]Chartier, T., Falgout, R.D., Henson, V.E., Jones, J., Manteuffel, T., McCormick, S., Ruge, J., and Vassilevski, P.S., Spectral AMGe (ρAMGe), SIAM J. Sci. Comput., 25 (2004), pp. 126.CrossRefGoogle Scholar
[15]Dendy, J.E., Black box multigrid for nonsymmetric problems, Appl. Math. Comput., 13 (1983), pp. 261283.Google Scholar
[16]Erlangga, Y.A. and Nabben, R. , Multilevel projection-based nested Krylov iteration for boundary value problems, SIAM J. Sci. Comput., 30 (2008), pp. 15721595.CrossRefGoogle Scholar
[17]Falgout, R.D. and Vassilevski, P.S., On generalizing the algebraic multigrid framework, SIAM J. Numer. Anal., 42 (2004), pp. 16691693.CrossRefGoogle Scholar
[18]Falgout, R.D., Vassilevski, P.S., and Zikatanov, L.T., On two-grid convergence estimates, Numer. Linear Algebra Appl., 12 (2005), pp. 471494.CrossRefGoogle Scholar
[19]Frank, J. and Vuik, C., On the construction of deflation-based preconditioners, SIAM J. Sci. Comput., 23 (2001), pp. 442462.CrossRefGoogle Scholar
[20]Hackbusch, W., Convergence of multi-grid iterations applied to difference equations, Math. Comp., 34 (1980), pp. 425440.Google Scholar
[21]Hackbusch, W., Multi-grid Methods and Applications, Springer, Berlin, 1985.CrossRefGoogle Scholar
[22]Hogben, L., ed., Handbook of Linear Algebra, CRC Press, Boca Raton, 2007.Google Scholar
[23]Horn, R. and Johnson, C., Matrix Analysis, 2nd Ed., Cambridge University Press, New York, 2013.Google Scholar
[24]Livne, O.E., Coarsening by compatible relaxation, Numer. Linear Algebra Appl., 11 (2004), pp. 205227.CrossRefGoogle Scholar
[25]Maclachlan, S.P. and Olson, L.N., Theoretical bounds for algebraic multigrid performance: review and analysis, Numer. Linear Algebra Appl., 21 (2014), pp. 194220.CrossRefGoogle Scholar
[26]Maitre, J. and Musy, F., Algebraic formalization of the multigrid method in the symmetric and positive definite case – a convergence estimation for the V-cycle, in Multigrid Methods for Integral and Differential Equations (Bristol, 1983), Paddon, D. and Holsein, H., eds., vol. 3 of Institute of Mathematics and Its Applications Conference Series, Oxford, 1985, Clarendon Press, p. 213223.Google Scholar
[27]Mandel, J., Algebraic study of multigrid methods for symmetric, definite problems, Appl. Math. Comput., 25 (1988), pp. 3956.Google Scholar
[28]Mandel, J., Balancing domain decomposition, Comm. Numer. Methods Engrg., 9 (1993), pp. 233241.CrossRefGoogle Scholar
[29]Mandel, J. and Brezina, M., Balancing domain decomposition for problems with large jumps in coefficients, Math. Comp., 65 (1996), pp. 13871401.CrossRefGoogle Scholar
[30]Mandel, J., McCormick, S.F., and Ruge, J.W., An algebraic theory for multigrid methods for variational problems, SIAM J. Numer. Anal., 25 (1988), pp. 91110.CrossRefGoogle Scholar
[31]McCormick, S., An algebraic interpretation of multigrid methods, SIAM J. Numer. Anal., 19 (1982), pp. 548560.CrossRefGoogle Scholar
[32]McCormick, S., Multigrid methods for variational problems: Further results, SIAM J. Numer. Anal., 21 (1984), pp. 255263.CrossRefGoogle Scholar
[33]McCormick, S., Multigrid methods for variational problems: general theory for the V-cycle, SIAM J. Numer. Anal., 22 (1985), pp. 634643.CrossRefGoogle Scholar
[34]Nabben, R. and Vuik, C., A comparison of deflation and coarse grid correction applied to porous media flow, SIAM J. Numer. Anal., 42 (2004), pp. 16311647.CrossRefGoogle Scholar
[35]Nabben, R. and Vuik, C., A comparison of deflation and the balancing preconditioner, SIAM J. Sci. Comput., 27 (2006), pp. 17421759.CrossRefGoogle Scholar
[36]Nabben, R. and Vuik, C., A comparison of abstract versions of deflation, balancing and additive coarse grid correction preconditioners, Numer. Linear Algebra Appl., 15 (2008), pp. 355372.CrossRefGoogle Scholar
[37]Napov, A. and Notay, Y., Comparison of bounds for V-cycle multigrid, Appl. Numer. Math., 60 (2010), pp. 176192.CrossRefGoogle Scholar
[38]Napov, A. and Notay, Y., Algebraic analysis of aggregation-based multigrid, Numer. Linear Algebra Appl., 18 (2011), pp. 539564.CrossRefGoogle Scholar
[39]Napov, A. and Notay, Y., An algebraic multigrid method with guaranteed convergence rate, SIAM J. Sci. Comput., 34 (2012), pp. A1079–A1109.CrossRefGoogle Scholar
[40]Notay, Y., Algebraic multigrid and algebraic multilevel methods: A theoretical comparison, Numer. Linear Algebra Appl., 12 (2005), pp. 419451.CrossRefGoogle Scholar
[41]Notay, Y., Convergence analysis of perturbed two-grid and multigrid methods, SIAM J. Numer. Anal., 45 (2007), pp. 10351044.CrossRefGoogle Scholar
[42]Notay, Y., Algebraic analysis of two-grid methods: The nonsymmetric case, Numer. Linear Algebra Appl., 17 (2010), pp. 7396.CrossRefGoogle Scholar
[43]Notay, Y., Aggregation-based algebraic multigrid for convection-diffusion equations, SIAM J. Sci. Comput., 34 (2012), pp. A2288–A2316.CrossRefGoogle Scholar
[44]Notay, Y. and Napov, A., Further comparison of additive and multiplicative coarse grid correction, Appl. Numer. Math., 65 (2013), pp. 5362.CrossRefGoogle Scholar
[45]Notay, Y. and Vassilevski, P.S., Recursive Krylov-based multigrid cycles, Numer. Linear Algebra Appl., 15 (2008), pp. 473487.CrossRefGoogle Scholar
[46]Oswald, P., Multilevel Finite Element Approximation: Theory and Applications, Teubner Skripte zur Numerik, Teubner, Stuttgart, 1994.Google Scholar
[47]Quarteroni, A. and Valli, A., Domain Decomposition Methods for Partial Differential Equations, Oxford Science Publications, Oxford, 1999.CrossRefGoogle Scholar
[48]Ruge, J.W. and Stüben, K., Algebraic multigrid (AMG), in Multigrid Methods, McCormick, S.F., ed., vol. 3 of Frontiers in Applied Mathematics, SIAM, Philadelphia, PA, 1987, pp. 73130.CrossRefGoogle Scholar
[49]Sala, M. and Tuminaro, R.S., A new Petrov-Galerkin smoothed aggregation preconditioner for nonsymmetric linear systems, SIAM J. Sci. Comput., 31 (2008), pp. 143166.CrossRefGoogle Scholar
[50]Smith, B., Bjørstad, P., and Gropp, W., Domain Decomposition, Cambridge University Press, Cambridge, 1996.Google Scholar
[51]Stüben, K., An introduction to algebraic multigrid, in Trottenberg, et al. [55], 2001, pp. 413532. Appendix A.Google Scholar
[52]Tang, J., Maclachlan, S., Nabben, R., and Vuik, C., A comparison of two-level preconditioners based on multigrid and deflation, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 17151739.CrossRefGoogle Scholar
[53]Tang, J., Nabben, R., Vuik, C., and Erlangga, Y., Comparison of two-level preconditioners derived fromdeflation, domain decomposition and multigrid methods, J. Sci. Comput., 39 (2009), pp. 340370.CrossRefGoogle Scholar
[54]Toselli, A. and Widlund, W., Domain Decomposition, Springer Ser. Comput. Math. 34, Springer-Verlag, Berlin, 2005.Google Scholar
[55]Trottenberg, U., Oosterlee, C.W., and Schüller, A., Multigrid, Academic Press, London, 2001.Google Scholar
[56]Vaněk, P., Brezina, M., and Mandel, J., Convergence of algebraic multigrid based on smoothed aggregation, Numer. Math., 88 (2001), pp. 559579.Google Scholar
[57]Vassilevski, P.S., Multilevel Block Factorization Preconditioners, Springer, New York, 2008.Google Scholar
[58]Vuik, C., Segal, A., El YAAKOUBI, L., and Dufour, E., A comparison of various deflation vectors applied to elliptic problems with discontinuous coefficients, Appl. Numer. Math., 41 (2002), pp. 219233.CrossRefGoogle Scholar
[59]Vuik, C., Segal, A., and Meijerink, J.A., An efficient preconditioned cg method for the solution of a class of layered problems with extreme contrasts in the coefficients, J. Comput. Physics, 152 (1999), pp. 385403.CrossRefGoogle Scholar
[60]Vuik, C., Segal, A., Meijerink, J.A., and Wijma, G.T., The construction of projection vectors for a deflated ICCG method applied to problems with extreme contrasts in the coefficients, J. Comput. Physics, 172 (2001), pp. 426450.CrossRefGoogle Scholar
[61]Wienands, R. and Oosterlee, C.W., On three-grid Fourier analysis for multigrid, SIAM J. Sci. Comput., 23 (2001), pp. 651671.CrossRefGoogle Scholar
[62]Xu, J., Iterative methods by space decomposition and subspace correction, SIAM Review, 34 (1992) , pp. 581613.CrossRefGoogle Scholar
[63]Yserentant, H., Old and new convergence proofs for multigrid methods, Acta Numer., 2 (1993) , pp. 285326.CrossRefGoogle Scholar