Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T00:49:04.103Z Has data issue: false hasContentIssue false

The crosstalk of hyaluronan-based extracellular matrix and synapses

Published online by Cambridge University Press:  08 October 2009

Renato Frischknecht*
Affiliation:
Leibniz Institute for Neurobiology, Magdeburg, Germany
Constanze I. Seidenbecher*
Affiliation:
Leibniz Institute for Neurobiology, Magdeburg, Germany
*
Correspondence should be addressed to: Renato Frischknecht or Constanze I. Seidenbecherrfrischk@ifn-magdeburg.de; seidenc@ifn-magdeburg.de
Correspondence should be addressed to: Renato Frischknecht or Constanze I. Seidenbecherrfrischk@ifn-magdeburg.de; seidenc@ifn-magdeburg.de

Abstract

Many neurons and their synapses are enwrapped in a brain-specific form of the extracellular matrix (ECM), the so-called perineuronal net (PNN). It forms late in the postnatal development around the time when synaptic contacts are stabilized. It is made of glycoproteins and proteoglycans of glial as well as neuronal origin. The major organizing polysaccharide of brain extracellular space is the polymeric carbohydrate hyaluronic acid (HA). It forms the backbone of a meshwork consisting of CNS proteoglycans such as the lectican family of chondroitin sulphate proteoglycans (CSPG). This family comprises four abundant components of brain ECM: aggrecan and versican as broadly expressed CSPGs and neurocan and brevican as nervous-system-specific family members. In this review, we intend to focus on the specific role of the HA-based ECM in synapse development and function.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al Qteishat, A., Gaffney, J.J., Krupinski, J. and Slevin, M. (2006) Hyaluronan expression following middle cerebral artery occlusion in the rat. Neuroreport 17, 11111114.CrossRefGoogle ScholarPubMed
Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C.B. and Seed, B. (1990) CD44 is the principal cell surface receptor for hyaluronate. Cell 61, 13031313.CrossRefGoogle ScholarPubMed
Aspberg, A., Miura, R., Bourdoulous, S., Shimonaka, M., Heinegard, D., Schachner, M. et al. (1997) The C-type lectin domains of lecticans, a family of aggregating chondroitin sulfate proteoglycans, bind tenascin-R by protein-protein interactions independent of carbohydrate moiety. Proceedings of the National Academy of Sciences of the U.S.A. 94, 1011610121.CrossRefGoogle ScholarPubMed
Banerji, S., Ni, J., Wang, S.X., Clasper, S., Su, J., Tammi, R. et al. (1999) LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. Journal of Cell Biology 144, 789801.CrossRefGoogle ScholarPubMed
Bartoletti, A., Medini, P., Berardi, N. and Maffei, L. (2004) Environmental enrichment prevents effects of dark-rearing in the rat visual cortex. Nature Neuroscience 7, 215216.CrossRefGoogle ScholarPubMed
Bausch, S.B. (2006) Potential roles for hyaluronan and CD44 in kainic acid-induced mossy fiber sprouting in organotypic hippocampal slice cultures. Neuroscience 143, 339350.CrossRefGoogle ScholarPubMed
Bignami, A., Hosley, M. and Dahl, D. (1993) Hyaluronic acid and hyaluronic acid-binding proteins in brain extracellular matrix. Anatomy and Embryology (Berlin) 188, 419433.CrossRefGoogle ScholarPubMed
Bloom, F.E. and Aghajanian, G.K. (1968) Fine structural and cytochemical analysis of the staining of synaptic junctions with phosphotungstic acid. Journal of Ultrastructure Research 22, 361375.CrossRefGoogle ScholarPubMed
Bondareff, W. and Sjostrand, J. (1969) Cytochemistry of synaptosomes. Experimental Neurology 24, 450458.CrossRefGoogle ScholarPubMed
Bono, P., Cordero, E., Johnson, K., Borowsky, M., Ramesh, V., Jacks, T. et al. (2005) Layilin, a cell surface hyaluronan receptor, interacts with merlin and radixin. Experimental Cell Research 308, 177187.CrossRefGoogle ScholarPubMed
Bono, P., Rubin, K., Higgins, J.M. and Hynes, R.O. (2001) Layilin, a novel integral membrane protein, is a hyaluronan receptor. Molecular Biology of the Cell 12, 891900.CrossRefGoogle ScholarPubMed
Borges, K., McDermott, D.L. and Dingledine, R. (2004) Reciprocal changes of CD44 and GAP-43 expression in the dentate gyrus inner molecular layer after status epilepticus in mice. Experimental Neurology 188, 110.CrossRefGoogle ScholarPubMed
Bourguignon, L.Y., Gilad, E., Peyrollier, K., Brightman, A. and Swanson, R.A. (2007) Hyaluronan-CD44 interaction stimulates Rac1 signaling and PKN gamma kinase activation leading to cytoskeleton function and cell migration in astrocytes. Journal of Neurochemistry 101, 10021017.CrossRefGoogle ScholarPubMed
Brakebusch, C., Seidenbecher, C.I., Asztely, F., Rauch, U., Matthies, H., Meyer, H. et al. (2002) Brevican-deficient mice display impaired hippocampal CA1 long-term potentiation but show no obvious deficits in learning and memory. Molecular and Cellular Biology 22, 74177427.CrossRefGoogle ScholarPubMed
Bruckner, G., Brauer, K., Hartig, W., Wolff, J.R., Rickmann, M.J., Derouiche, A. et al. (1993) Perineuronal nets provide a polyanionic, glia-associated form of microenvironment around certain neurons in many parts of the rat brain. Glia 8, 183200.CrossRefGoogle ScholarPubMed
Bruckner, G., Grosche, J., Hartlage-Rubsamen, M., Schmidt, S. and Schachner, M. (2003) Region and lamina-specific distribution of extracellular matrix proteoglycans, hyaluronan and tenascin-R in the mouse hippocampal formation. Journal of Chemical Neuroanatomy 26, 3750.CrossRefGoogle ScholarPubMed
Bruckner, G., Grosche, J., Schmidt, S., Hartig, W., Margolis, R.U., Delpech, B. et al. (2000) Postnatal development of perineuronal nets in wild-type mice and in a mutant deficient in tenascin-R. Journal of Comparative Neurology 428, 616629.3.0.CO;2-K>CrossRefGoogle Scholar
Bukalo, O., Schachner, M. and Dityatev, A. (2001) Modification of extracellular matrix by enzymatic removal of chondroitin sulfate and by lack of tenascin-R differentially affects several forms of synaptic plasticity in the hippocampus. Neuroscience 104, 359369.CrossRefGoogle ScholarPubMed
Bukalo, O., Schachner, M. and Dityatev, A. (2007) Hippocampal metaplasticity induced by deficiency in the extracellular matrix glycoprotein tenascin-R. Journal of Neuroscience 27, 60196028.CrossRefGoogle ScholarPubMed
Camenisch, T.D., Spicer, A.P., Brehm-Gibson, T., Biesterfeldt, J., Augustine, M.L., Calabro, A. Jr., et al. (2000) Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. Journal of Clinical Investigation 106, 349360.CrossRefGoogle ScholarPubMed
Carulli, D., Rhodes, K.E., Brown, D.J., Bonnert, T.P., Pollack, S.J., Oliver, K. et al. (2006) Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. Journal of Comparative Neurology 494, 559577.CrossRefGoogle ScholarPubMed
Carulli, D., Rhodes, K.E. and Fawcett, J.W. (2007) Upregulation of aggrecan, link protein 1, and hyaluronan synthases during formation of perineuronal nets in the rat cerebellum. Journal of Comparative Neurology 501, 8394.CrossRefGoogle ScholarPubMed
Celio, M.R. and Blumcke, I. (1994) Perineuronal nets – a specialized form of extracellular matrix in the adult nervous system. Brain Research Brain Research Reviews 19, 128145.CrossRefGoogle ScholarPubMed
Celio, M.R., Spreafico, R., De Biasi, S. and Vitellaro-Zuccarello, L. (1998) Perineuronal nets: past and present. Trends in Neuroscience 21, 510515.CrossRefGoogle ScholarPubMed
Csoka, A.B., Frost, G.I. and Stern, R. (2001) The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biology 20, 499508.CrossRefGoogle ScholarPubMed
Custod, J.T. and Young, I.J. (1968) Cat brain mucopolysaccharides and their in vivo hyaluronidase digestion. Journal of Neurochemistry 15, 809813.CrossRefGoogle ScholarPubMed
Dityatev, A., Bruckner, G., Dityateva, G., Grosche, J., Kleene, R. and Schachner, M. (2007) Activity-dependent formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal nets. Developmental Neurobiology 67, 570588.CrossRefGoogle ScholarPubMed
Dityatev, A. and Fellin, T. (2009) Extracellular matrix in plasticity and epileptogenesis. Neuron Glia Biology.Google Scholar
Dityatev, A., Frischknecht, R. and Seidenbecher, C. (2006) Extracellular matrix and synaptic functions. Results & Problems in Cell Differentiation 43, 6997.CrossRefGoogle ScholarPubMed
Dityatev, A. and Schachner, M. (2003) Extracellular matrix molecules and synaptic plasticity. Nature Reviews Neuroscience 4, 456468.CrossRefGoogle Scholar
Evers, M.R., Salmen, B., Bukalo, O., Rollenhagen, A., Bosl, M.R., Morellini, F. et al. (2002) Impairment of L-type Ca2+ channel-dependent forms of hippocampal synaptic plasticity in mice deficient in the extracellular matrix glycoprotein tenascin-C. Journal of Neuroscience 22, 71777194.CrossRefGoogle ScholarPubMed
Falkowski, M., Schledzewski, K., Hansen, B. and Goerdt, S. (2003) Expression of stabilin-2, a novel fasciclin-like hyaluronan receptor protein, in murine sinusoidal endothelia, avascular tissues, and at solid/liquid interfaces. Histochemistry and Cell Biology 120, 361369.CrossRefGoogle ScholarPubMed
Forsberg, E., Hirsch, E., Frohlich, L., Meyer, M., Ekblom, P., Aszodi, A. et al. (1996) Skin wounds and severed nerves heal normally in mice lacking tenascin-C. Proceedings of the National Academy of Sciences of the U.S.A. 93, 65946599.CrossRefGoogle ScholarPubMed
Forster, E., Zhao, S. and Frotscher, M. (2001) Hyaluronan-associated adhesive cues control fiber segregation in the hippocampus. Development 128, 30293039.CrossRefGoogle ScholarPubMed
Friedlander, D.R., Milev, P., Karthikeyan, L., Margolis, R.K., Margolis, R.U. and Grumet, M. (1994) The neuronal chondroitin sulfate proteoglycan neurocan binds to the neural cell adhesion molecules Ng-CAM/L1/NILE and N-CAM, and inhibits neuronal adhesion and neurite outgrowth. Journal of Cell Biology 125, 669680.CrossRefGoogle Scholar
Frischknecht, R., Heine, M., Perrais, D., Seidenbecher, C.I., Choquet, D. and Gundelfinger, E.D. (2009) Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nature Neuroscience 12, 897904.CrossRefGoogle ScholarPubMed
Furukawa, M., Shimoda, H., Kajiwara, T., Kato, S. and Yanagisawa, S. (2008) Topographic study on nerve-associated lymphatic vessels in the murine craniofacial region by immunohistochemistry and electron microscopy. Biomedical Research 29, 289296.CrossRefGoogle Scholar
Garkun, Y.S., Yakubovich, N.V., Denisov, A.A., Molchanov, P.G., Emel'janova, A.A., Pashkevich, S.G. et al. (2008) Generation of excitatory postsynaptic potentials in the hippocampus after functional modification of glycosaminoglycans. Bulletin of Experimental Biology and Medicine 145, 395397.CrossRefGoogle ScholarPubMed
Hafemann, D.R., Costin, A. and Tarby, T.J. (1970) Electrophysiological effects of enzymes introduced into the lateral geniculate body of the cat. Experimental Neurology 27, 238247.CrossRefGoogle ScholarPubMed
Hansen, B., Longati, P., Elvevold, K., Nedredal, G.I., Schledzewski, K., Olsen, R. et al. (2005) Stabilin-1 and stabilin-2 are both directed into the early endocytic pathway in hepatic sinusoidal endothelium via interactions with clathrin/AP-2, independent of ligand binding. Experimental Cell Research 303, 160173.CrossRefGoogle ScholarPubMed
Harris, E.N., Kyosseva, S.V., Weigel, J.A. and Weigel, P.H. (2007) Expression, processing, and glycosaminoglycan binding activity of the recombinant human 315-kDa hyaluronic acid receptor for endocytosis (HARE). Journal of Biological Chemistry 282, 27852797.CrossRefGoogle ScholarPubMed
Hedstrom, K.L., Xu, X., Ogawa, Y., Frischknecht, R., Seidenbecher, C.I., Shrager, P. et al. (2007) Neurofascin assembles a specialized extracellular matrix at the axon initial segment. Journal of Cell Biology 178, 875886.CrossRefGoogle ScholarPubMed
Heine, M., Groc, L., Frischknecht, R., Beique, J.C., Lounis, B., Rumbaugh, G. et al. (2008) Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science 320, 201205.CrossRefGoogle Scholar
Itano, N. and Kimata, K. (2002) Mammalian hyaluronan synthases. IUBMB Life 54, 195199.CrossRefGoogle ScholarPubMed
John, N., Krugel, H., Frischknecht, R., Smalla, K.H., Schultz, C., Kreutz, M.R. et al. (2006) Brevican-containing perineuronal nets of extracellular matrix in dissociated hippocampal primary cultures. Molecular and Cellular Neuroscience 31, 774784.CrossRefGoogle ScholarPubMed
Kaaijk, P., Pals, S.T., Morsink, F., Bosch, D.A. and Troost, D. (1997) Differential expression of CD44 splice variants in the normal human central nervous system. Journal of Neuroimmunology 73, 7076.CrossRefGoogle ScholarPubMed
Lepperdinger, G., Strobl, B. and Kreil, G. (1998) HYAL2, a human gene expressed in many cells, encodes a lysosomal hyaluronidase with a novel type of specificity. Journal of Biological Chemistry 273, 2246622470.CrossRefGoogle ScholarPubMed
Lin, R., Kwok, J.C., Crespo, D. and Fawcett, J.W. (2008) Chondroitinase ABC has a long-lasting effect on chondroitin sulphate glycosaminoglycan content in the injured rat brain. Journal of Neurochemistry 104, 400408.CrossRefGoogle Scholar
Lokeshwar, V.B., Iida, N. and Bourguignon, L.Y. (1996) The cell adhesion molecule, GP116, is a new CD44 variant (ex14/v10) involved in hyaluronic acid binding and endothelial cell proliferation. Journal of Biological Chemistry 271, 2385323864.CrossRefGoogle ScholarPubMed
Lynn, B.D., Li, X., Cattini, P.A. and Nagy, J.I. (2001a) Sequence, protein expression and extracellular-regulated kinase association of the hyaladherin RHAMM (receptor for hyaluronan mediated motility) in PC12 cells. Neuroscience Letters 306, 4952.CrossRefGoogle ScholarPubMed
Lynn, B.D., Li, X., Cattini, P.A., Turley, E.A. and Nagy, J.I. (2001b) Identification of sequence, protein isoforms, and distribution of the hyaluronan-binding protein RHAMM in adult and developing rat brain. Journal of Comparative Neurology 439, 315330.CrossRefGoogle ScholarPubMed
Maolood, N., Hardin-Pouzet, H. and Grange-Messent, V. (2008) Matrix metalloproteinases MMP2 and MMP9 are upregulated by noradrenaline in the mouse neuroendocrine hypothalamus. European Journal of Neuroscience 27, 11431152.CrossRefGoogle ScholarPubMed
Margolis, R.U., Margolis, R.K., Santella, R. and Atherton, D.M. (1972) The hyaluronidase of brain. Journal of Neurochemistry 19, 23252332.CrossRefGoogle ScholarPubMed
Matsumoto-Miyai, K., Sokolowska, E., Zurlinden, A., Gee, C.E., Luscher, D., Hettwer, S. et al. (2009) Coincident pre- and postsynaptic activation induces dendritic filopodia via neurotrypsin-dependent agrin cleavage. Cell 136, 11611171.CrossRefGoogle ScholarPubMed
Milev, P., Chiba, A., Haring, M., Rauvala, H., Schachner, M., Ranscht, B. et al. (1998) High affinity binding and overlapping localization of neurocan and phosphacan/protein-tyrosine phosphatase-zeta/beta with tenascin-R, amphoterin, and the heparin-binding growth-associated molecule. Journal of Biological Chemistry 273, 69987005.CrossRefGoogle ScholarPubMed
Milev, P., Maurel, P., Haring, M., Margolis, R.K. and Margolis, R.U. (1996) TAG-1/axonin-1 is a high-affinity ligand of neurocan, phosphacan/protein-tyrosine phosphatase-zeta/beta, and N-CAM. Journal of Biological Chemistry 271, 1571615723.CrossRefGoogle ScholarPubMed
Miura, R., Aspberg, A., Ethell, I.M., Hagihara, K., Schnaar, R.L., Ruoslahti, E. et al. (1999) The proteoglycan lectin domain binds sulfated cell surface glycolipids and promotes cell adhesion. Journal of Biological Chemistry 274, 1143111438.CrossRefGoogle ScholarPubMed
Mjaatvedt, C.H., Yamamura, H., Capehart, A.A., Turner, D. and Markwald, R.R. (1998) The Cspg2 gene, disrupted in the hdf mutant, is required for right cardiac chamber and endocardial cushion formation. Developmental Biology 202, 5666.CrossRefGoogle ScholarPubMed
Moon, L.D., Asher, R.A. and Fawcett, J.W. (2003) Limited growth of severed CNS axons after treatment of adult rat brain with hyaluronidase. Journal of Neuroscience Research 71, 2337.CrossRefGoogle ScholarPubMed
Morgelin, M., Heinegard, D., Engel, J. and Paulsson, M. (1994) The cartilage proteoglycan aggregate: assembly through combined protein-carbohydrate and protein-protein interactions. Biophysical Chemistry 50, 113128.CrossRefGoogle ScholarPubMed
Murakami, T. and Ohtsuka, A. (2003) Perisynaptic barrier of proteoglycans in the mature brain and spinal cord. Archives of Histology and Cytology 66, 195207.CrossRefGoogle ScholarPubMed
Nakic, M., Manahan-Vaughan, D., Reymann, K.G. and Schachner, M. (1998) Long-term potentiation in vivo increases rat hippocampal tenascin-C expression. Journal of Neurobiology 37, 393404.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Noble, P.W. (2002) Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biology 21, 2529.CrossRefGoogle ScholarPubMed
Oray, S., Majewska, A. and Sur, M. (2004) Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation. Neuron 44, 10211030.CrossRefGoogle ScholarPubMed
Perosa, F., Luccarelli, G., Prete, M., Favoino, E., Ferrone, S. and Dammacco, F. (2003b) Beta 2-microglobulin-free HLA class I heavy chain epitope mimicry by monoclonal antibody HC-10-specific peptide. Journal of Immunology 171, 19181926.CrossRefGoogle Scholar
Perosa, F., Prete, M., Luccarelli, G. and Dammacco, F. (2003a) Size variants of beta-2-microglobulin-free human leucocyte antigen class I heavy chain make different contributions to its serum increase in multiple myeloma. British Journal of Haematology 120, 3643.CrossRefGoogle Scholar
Pizzorusso, T., Medini, P., Berardi, N., Chierzi, S., Fawcett, J.W. and Maffei, L. (2002) Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298, 12481251.CrossRefGoogle ScholarPubMed
Pizzorusso, T., Medini, P., Landi, S., Baldini, S., Berardi, N. and Maffei, L. (2006) Structural and functional recovery from early monocular deprivation in adult rats. Proceedings of the National Academy of Sciences of the U.S.A. 103, 85178522.CrossRefGoogle ScholarPubMed
Quaglia, X., Beggah, A.T., Seidenbecher, C. and Zurn, A.D. (2008) Delayed priming promotes CNS regeneration post-rhizotomy in neurocan and brevican-deficient mice. Brain 131, 240249.CrossRefGoogle ScholarPubMed
Rauch, U., Clement, A., Retzler, C., Frohlich, L., Fassler, R., Gohring, W. et al. (1997) Mapping of a defined neurocan binding site to distinct domains of tenascin-C. Journal of Biological Chemistry 272, 2690526912.CrossRefGoogle ScholarPubMed
Rauch, U., Zhou, X.H. and Roos, G. (2005) Extracellular matrix alterations in brains lacking four of its components. Biochemical and Biophysical Research Communications 328, 608617.CrossRefGoogle ScholarPubMed
Sadeghi, N., Camby, I., Goldman, S., Gabius, H.J., Baleriaux, D., Salmon, I. et al. (2003) Effect of hydrophilic components of the extracellular matrix on quantifiable diffusion-weighted imaging of human gliomas: preliminary results of correlating apparent diffusion coefficient values and hyaluronan expression level. American Journal of Roentgenology 181, 235241.CrossRefGoogle ScholarPubMed
Seidenbecher, C., Richter, K. and Gundelfinger, E.D. (1997) Brevican, a conditional proteoglycan from rat brain: characterization of secreted and GPI-anchored isoforms. In Teelken, A.W. and Korf, J. (eds) Neurochemistry. New York: Plenum Press, pp. 901904.Google Scholar
Seidenbecher, C.I., Richter, K., Rauch, U., Fassler, R., Garner, C.C. and Gundelfinger, E.D. (1995) Brevican, a chondroitin sulfate proteoglycan of rat brain, occurs as secreted and cell surface glycosylphosphatidylinositol-anchored isoforms. Journal of Biological Chemistry 270, 2720627212.CrossRefGoogle ScholarPubMed
Seidenbecher, C.I., Smalla, K.H., Fischer, N., Gundelfinger, E.D. and Kreutz, M.R. (2002) Brevican isoforms associate with neural membranes. Journal of Neurochemistry 83, 738746.CrossRefGoogle ScholarPubMed
Spicer, A.P., Joo, A. and Bowling, R.A. Jr. (2003) A hyaluronan binding link protein gene family whose members are physically linked adjacent to chondroitin sulfate proteoglycan core protein genes: the missing links. Journal of Biological Chemistry 278, 2108321091.CrossRefGoogle ScholarPubMed
Spicer, A.P., Tien, J.L., Joo, A. and Bowling, R.A. Jr. (2002) Investigation of hyaluronan function in the mouse through targeted mutagenesis. Glycoconjugate Journal 19, 341345.CrossRefGoogle ScholarPubMed
Stern, R., Asari, A.A. and Sugahara, K.N. (2006) Hyaluronan fragments: an information-rich system. European Journal of Cell Biology 85, 699715.CrossRefGoogle ScholarPubMed
Stern, R. and Jedrzejas, M.J. (2006) Hyaluronidases: their genomics, structures, and mechanisms of action. Chemical Reviews 106, 818839.CrossRefGoogle ScholarPubMed
Strobl, B., Wechselberger, C., Beier, D.R. and Lepperdinger, G. (1998) Structural organization and chromosomal localization of Hyal2, a gene encoding a lysosomal hyaluronidase. Genomics 53, 214219.CrossRefGoogle ScholarPubMed
Thon, N., Haas, C.A., Rauch, U., Merten, T., Fassler, R., Frotscher, M. et al. (2000) The chondroitin sulphate proteoglycan brevican is upregulated by astrocytes after entorhinal cortex lesions in adult rats. European Journal of Neuroscience 12, 25472558.CrossRefGoogle ScholarPubMed
Tona, A. and Bignami, A. (1993) Effect of hyaluronidase on brain extracellular matrix in vivo and optic nerve regeneration. Journal of Neuroscience Research 36, 191199.CrossRefGoogle ScholarPubMed
Toole, B.P. (2004) Hyaluronan: from extracellular glue to pericellular cue. Nature Reviews Cancer 4, 528539.CrossRefGoogle ScholarPubMed
Turley, E.A., Noble, P.W. and Bourguignon, L.Y. (2002) Signaling properties of hyaluronan receptors. Journal of Biological Chemistry 277, 45894592.CrossRefGoogle ScholarPubMed
Wang, H.H. and Adey, W.R. (1969) Effects of cations and hyaluronidase on cerebral electrical impedance. Experimental Neurology 25, 7084.CrossRefGoogle ScholarPubMed
Watanabe, H., Kimata, K., Line, S., Strong, D., Gao, L.Y., Kozak, C.A. et al. (1994) Mouse cartilage matrix deficiency (cmd) caused by a 7 bp deletion in the aggrecan gene. Nature Genetics 7, 154157.CrossRefGoogle ScholarPubMed
Yamada, H., Fredette, B., Shitara, K., Hagihara, K., Miura, R., Ranscht, B. et al. (1997) The brain chondroitin sulfate proteoglycan brevican associates with astrocytes ensheathing cerebellar glomeruli and inhibits neurite outgrowth from granule neurons. Journal of Neuroscience 17, 77847795.CrossRefGoogle ScholarPubMed
Yamaguchi, Y. (2000) Lecticans: organizers of the brain extracellular matrix. Cellular and Molecular Life Sciences 57, 276289.CrossRefGoogle ScholarPubMed
Yoshida, M., Itano, N., Yamada, Y. and Kimata, K. (2000) In vitro synthesis of hyaluronan by a single protein derived from mouse HAS1 gene and characterization of amino acid residues essential for the activity. Journal of Biological Chemistry 275, 497506.CrossRefGoogle ScholarPubMed
Zaremba, S., Guimaraes, A., Kalb, R.G. and Hockfield, S. (1989) Characterization of an activity-dependent, neuronal surface proteoglycan identified with monoclonal antibody Cat-301. Neuron 2, 12071219.CrossRefGoogle ScholarPubMed
Zhao, S., Forster, E., Chai, X. and Frotscher, M. (2003) Different signals control laminar specificity of commissural and entorhinal fibers to the dentate gyrus. Journal of Neuroscience 23, 73517357.CrossRefGoogle Scholar
Zhou, X.H., Brakebusch, C., Matthies, H., Oohashi, T., Hirsch, E., Moser, M. et al. (2001) Neurocan is dispensable for brain development. Molecular and Cellular Biology 21, 59705978.CrossRefGoogle ScholarPubMed
Zimmermann, D.R. and Dours-Zimmermann, M.T. (2008) Extracellular matrix of the central nervous system: from neglect to challenge. Histochemistry and Cell Biology 130, 635653.CrossRefGoogle ScholarPubMed