Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T07:56:14.027Z Has data issue: false hasContentIssue false

Analysis of population functional connectivity data via multilayer network embeddings

Published online by Cambridge University Press:  21 October 2020

James D. Wilson*
Affiliation:
Department of Mathematics and Statistics, University of San Francisco, San Francisco, CA94117, USA The Data Institute, University of San Francisco, San Francisco, CA94117, USA (e-mail: apopa@gmail.com)
Melanie Baybay
Affiliation:
Department of Computer Science, University of San Francisco, San Francisco, CA94117, USA (e-mail: mbaybay@dons.usfca.edu)
Rishi Sankar
Affiliation:
Department of Computer Science, University of California, Los Angeles, CA90095, USA (e-mail: rishi.sankar@gmail.com)
Paul Stillman
Affiliation:
Department of Marketing, Yale School of Management, New Haven, CT06511, USA (e-mail: paul.stillman@yale.edu)
Abbie M. Popa
Affiliation:
The Data Institute, University of San Francisco, San Francisco, CA94117, USA (e-mail: apopa@gmail.com)
*
*Corresponding author. Email: jdwilson4@usfca.edu

Abstract

Population analyses of functional connectivity have provided a rich understanding of how brain function differs across time, individual, and cognitive task. An important but challenging task in such population analyses is the identification of reliable features that describe the function of the brain, while accounting for individual heterogeneity. Our work is motivated by two particularly important challenges in this area: first, how can one analyze functional connectivity data over populations of individuals, and second, how can one use these analyses to infer group similarities and differences. Motivated by these challenges, we model population connectivity data as a multilayer network and develop the multi-node2vec algorithm, an efficient and scalable embedding method that automatically learns continuous node feature representations from multilayer networks. We use multi-node2vec to analyze resting state fMRI scans over a group of 74 healthy individuals and 60 patients with schizophrenia. We demonstrate how multilayer network embeddings can be used to visualize, cluster, and classify functional regions of the brain for these individuals. We furthermore compare the multilayer network embeddings of the two groups. We identify significant differences between the groups in the default mode network and salience network—findings that are supported by the triple network model theory of cognitive organization. Our findings reveal that multi-node2vec is a powerful and reliable method for analyzing multilayer networks. Data and publicly available code are available at https://github.com/jdwilson4/multi-node2vec.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Action Editor: Filippo Menczer

References

Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. D. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. The Journal of Neuroscience, 26(1), 6372.CrossRefGoogle ScholarPubMed
Bassett, D. S., & Bullmore, E. D. (2006). Small-world brain networks. The Neuroscientist, 12(6), 512523.CrossRefGoogle ScholarPubMed
Bassett, D. S., Meyer-Lindenberg, A., Achard, S., Duke, T., & Bullmore, E. (2006). Adaptive reconfiguration of fractal small-world human brain functional networks. Proceedings of the National Academy of Sciences, 103(51), 1951819523.CrossRefGoogle ScholarPubMed
Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., & Grafton, S. T. (2011). Dynamic reconfiguration of human brain networks during learning. Proceedings of the National Academy of Sciences, 108(18), 76417646.CrossRefGoogle ScholarPubMed
Bassett, D. S., Yang, M., Wymbs, N. F., & Grafton, S. T. (2015). Learning-induced autonomy of sensorimotor systems. Nature Neuroscience, 18(5), 744751.CrossRefGoogle ScholarPubMed
Betzel, R. F., & Bassett, D. S. (2017). Multi-scale brain networks. Neuroimage, 160, 7383.CrossRefGoogle ScholarPubMed
Biswal, B. B., Mennes, M., Zuo, X.-N., Gohel, S., Kelly, C., Smith, S. M., … Milham, M. P. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences, 107(10), 47344739.CrossRefGoogle ScholarPubMed
Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C. I., Gómez-Gardeñes, J., Romance, M., … Zanin, M. (2014). The structure and dynamics of multilayer networks. Physics Reports, 544(1), 1122.CrossRefGoogle ScholarPubMed
Braun, U., Schäfer, A., Walter, H., Erk, S., Romanczuk-Seiferth, N., Haddad, L., … Bassett, D. S. (2015). Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proceedings of the National Academy of Sciences, 112(37), 1167811683.CrossRefGoogle ScholarPubMed
Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences, 14(6), 277290.CrossRefGoogle ScholarPubMed
Bühlmann, P., & Van De Geer, S. (2011). Statistics for high-dimensional data: Methods, theory and applications. Springer-Verlag Berlin Heidelberg London New York: Springer Science & Business Media.CrossRefGoogle Scholar
Bullmore, Ed., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186198.CrossRefGoogle ScholarPubMed
Bullmore, Ed., & Sporns, O. (2012). The economy of brain network organization. Nature Reviews Neuroscience, 13(5), 336349.CrossRefGoogle ScholarPubMed
Chai, X. J., Castañón, A. N., Öngür, D., & Whitfield-Gabrieli, S. (2012). Anticorrelations in resting state networks without global signal regression. Neuroimage, 59(2), 14201428.CrossRefGoogle ScholarPubMed
Cole, M. W., Yarkoni, T., Repovš, G., Anticevic, A., & Braver, T. S. (2012). Global connectivity of prefrontal cortex predicts cognitive control and intelligence. The Journal of Neuroscience, 32(26), 89888999.CrossRefGoogle ScholarPubMed
De Domenico, M., Lancichinetti, A., Arenas, A., & Rosvall, M. (2015). Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems. Physical Review X, 5(1), 011027.CrossRefGoogle Scholar
Denny, M. J., Wilson, J. D., Cranmer, S. J., Desmarais, B. A., & Bhamidi, S. (2017). Gergm: Estimation and fit diagnostics for generalized exponential random graph models. R package version 0.11, 2.Google Scholar
Fornito, A., Zalesky, A., Bassett, D. S., Meunier, D., Ellison-Wright, I., Yücel, M., … Bullmore, E. T. (2011). Genetic influences on cost-efficient organization of human cortical functional networks. The Journal of Neuroscience, 31(9), 32613270.CrossRefGoogle ScholarPubMed
Gallagher, B., & Eliassi-Rad, T. (2010). Leveraging label-independent features for classification in sparsely labeled networks: An empirical study. In Advances in social network mining and analysis (pp. 119). Springer.Google Scholar
Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems, 151, 7894.CrossRefGoogle Scholar
Grover, A., & Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 855864). ACM.CrossRefGoogle Scholar
Han, Q., Xu, K., & Airoldi, E. (2015). Consistent estimation of dynamic and multi-layer block models. In Proceedings of the 32nd international conference on machine learning (ICML-15) (pp. 15111520).Google Scholar
Hanneke, S., Fu, W., & Xing, E. P. (2010). Discrete temporal models of social networks. Electronic Journal of Statistics, 4, 585605.CrossRefGoogle Scholar
Hare, S. M., Ford, J. M., Mathalon, D. H., Damaraju, E., Bustillo, J., Belger, A., … Turner, J. A. (2018). Salience–default mode functional network connectivity linked to positive and negative symptoms of schizophrenia. Schizophrenia Bulletin, 45(4), 892901.CrossRefGoogle Scholar
He, Y., Chen, Z. J., & Evans, A. C. (2007). Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cerebral Cortex, 17(10), 24072419.CrossRefGoogle ScholarPubMed
Henderson, K., Gallagher, B., Li, L., Akoglu, L., Eliassi-Rad, T., Tong, H., & Faloutsos, C. (2011). It’s who you know: Graph mining using recursive structural features. In Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 663671). ACM.CrossRefGoogle Scholar
Hoff, P. D., Raftery, A. E., & Handcock, M. S. (2002). Latent space approaches to social network analysis. Journal of the American Statistical Association, 97(460), 10901098.CrossRefGoogle Scholar
Insel, T. R., Landis, S. C., & Collins, F. S. (2013). The NIH brain initiative. Science, 340(6133), 687688.CrossRefGoogle ScholarPubMed
Kinnison, J., Padmala, S., Choi, J.-M., & Pessoa, L. (2012). Network analysis reveals increased integration during emotional and motivational processing. The Journal of Neuroscience, 32(24), 83618372.CrossRefGoogle ScholarPubMed
Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arxiv preprint arxiv:1609.02907.Google Scholar
Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of Complex Networks, 2(3), 203271.CrossRefGoogle Scholar
Lambiotte, R., Delvenne, J.-C., & Barahona, M. (2008). Laplacian dynamics and multiscale modular structure in networks. arxiv preprint arxiv:0812.1770.Google Scholar
Lee, J. D., Simchowitz, M., Jordan, M. I., & Recht, B. (2016). Gradient descent only converges to minimizers. In Conference on learning theory (pp. 12461257).Google Scholar
Lee, J., Li, G., & Wilson, J. D. (2020). Varying-coefficient models for dynamic networks. Computational Statistics & Data Analysis, 152, 107052.CrossRefGoogle Scholar
Levy, O., & Goldberg, Y. (2014). Neural word embedding as implicit matrix factorization. In Advances in neural information processing systems (pp. 21772185).Google Scholar
Li, S., Hu, N., Zhang, W., Tao, B., Dai, J., Gong, Y., … Lui, S. (2019). Dysconnectivity of multiple brain networks in schizophrenia: A meta-analysis of resting-state functional connectivity. Frontiers in Psychiatry, 10, 482.CrossRefGoogle ScholarPubMed
Mayer, A. R., Ruhl, D., Merideth, F., Ling, J., Hanlon, F. M., Bustillo, J., & Cañive, J. (2013). Functional imaging of the hemodynamic sensory gating response in schizophrenia. Human Brain Mapping, 34(9), 23022312.CrossRefGoogle Scholar
McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27(1), 415444.CrossRefGoogle Scholar
Medaglia, J. D., Lynall, M.-E., & Bassett, D. S. (2015). Cognitive network neuroscience. Journal of Cognitive Neuroscience, 27(8), 14711491.CrossRefGoogle ScholarPubMed
Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15(10), 483506.CrossRefGoogle ScholarPubMed
Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure and Function, 214(5–6), 655667.CrossRefGoogle ScholarPubMed
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013a). Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems (pp. 31113119).Google Scholar
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013b). Efficient estimation of word representations in vector space. arxiv preprint arxiv:1301.3781.Google Scholar
Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J.-P. (2010). Community structure in time-dependent, multiscale, and multiplex networks. Science, 328(5980), 876878.CrossRefGoogle ScholarPubMed
Muldoon, S. F., & Bassett, D. S. (2016). Network and multilayer network approaches to understanding human brain dynamics. Philosophy of Science, 83(5), 710720.CrossRefGoogle Scholar
Paul, S., & Chen, Y. (2018). A random effects stochastic block model for joint community detection in multiple networks with applications to neuroimaging. arxiv preprint arxiv:1805.02292.Google Scholar
Pavlovic, D. M., Guillaume, B. L. R., Towlson, E. K., Kuek, N. M. Y., Afyouni, S., Vertes, P. E., … Nichols, T. E. (2019). Multi-subject stochastic blockmodels for adaptive analysis of individual differences in human brain network cluster structure. Biorxiv, 672071.CrossRefGoogle Scholar
Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. In EMNLP (pp. 15321543), vol. 14.Google Scholar
Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 701710). ACM.CrossRefGoogle Scholar
Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., … Petersen, S. E. (2011). Functional network organization of the human brain. Neuron, 72(4), 665678.CrossRefGoogle ScholarPubMed
Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., & Tang, J. (2018). Network embedding as matrix factorization: Unifying DeepWalk, LINE, PTE, and node2vec. In Proceedings of the eleventh ACM international conference on web search and data mining (pp. 459467). ACM.CrossRefGoogle Scholar
Relión, J. D. A., Kessler, D., Levina, E., & Taylor, S. F. (2019). Network classification with applications to brain connectomics. The Annals of Applied Statistics, 13(3), 16481677.CrossRefGoogle Scholar
Rosenthal, G., Váša, F., Griffa, A., Hagmann, P., Amico, E., Goñi, J., … Sporns, O. (2018). Mapping higher-order relations between brain structure and function with embedded vector representations of connectomes. Nature Communications, 9(1), 2178.CrossRefGoogle ScholarPubMed
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., … Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27(9), 23492356.CrossRefGoogle ScholarPubMed
Sewell, D. K., & Chen, Y. (2015). Latent space models for dynamic networks. Journal of the American Statistical Association, 110(512), 16461657.CrossRefGoogle Scholar
Simpson, S. L., Bahrami, M., & Laurienti, P. J. (2019). A mixed-modeling framework for analyzing multitask whole-brain network data. Network Neuroscience, 3(2), 307324.CrossRefGoogle ScholarPubMed
Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F., Nichols, T. E., … Woolrich, M. W. (2011). Network modelling methods for FMRI. Neuroimage, 54(2), 875891.CrossRefGoogle ScholarPubMed
Sporns, O. (2011). Networks of the brain. MIT press.Google Scholar
Sporns, O. (2014). Contributions and challenges for network models in cognitive neuroscience. Nature Neuroscience, 17(5), 652660.CrossRefGoogle ScholarPubMed
Sporns, O., & Betzel, R. F. (2016). Modular brain networks. Annual Review of Psychology, 67, 613.CrossRefGoogle ScholarPubMed
Stanley, N., Shai, S., Taylor, D., & Mucha, P. (2016). Clustering network layers with the strata multilayer stochastic block model. IEEE transactions on network science and engineering, 3(2), 95105.CrossRefGoogle ScholarPubMed
Stillman, P. E., Wilson, J. D., Denny, M. J., Desmarais, B. A., Bhamidi, S., Cranmer, S. J., & Lu, Z.-L. (2017). Statistical modeling of the default mode brain network reveals a segregated highway structure. Scientific Reports, 7(1), 114.CrossRefGoogle ScholarPubMed
Stillman, P. E., Wilson, J. D., Denny, M. J., Desmarais, B. A., Cranmer, S. J., & Lu, Z.-L. (2019). A consistent organizational structure across multiple functional subnetworks of the human brain. Neuroimage, 197, 2436.CrossRefGoogle ScholarPubMed
Supekar, K., Cai, W., Krishnadas, R., Palaniyappan, L., & Menon, V. (2019). Dysregulated brain dynamics in a triple-network saliency model of schizophrenia and its relation to psychosis. Biological Psychiatry, 85(1), 6069.CrossRefGoogle Scholar
Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015). Line: Large-scale information network embedding. In Proceedings of the 24th international conference on world wide web (pp. 10671077). International World Wide Web Conferences Steering Committee.CrossRefGoogle Scholar
van den Heuvel, M. P., Kahn, R. S., Goñi, J., & Sporns, O. (2012). High-cost, high-capacity backbone for global brain communication. Proceedings of the National Academy of Sciences, 109(28), 1137211377.CrossRefGoogle ScholarPubMed
van den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the human connectome. The Journal of Neuroscience, 31(44), 1577515786.CrossRefGoogle ScholarPubMed
Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E. J., Yacoub, E., Ugurbil, K., & for the WU-Minn HCP Consortium. (2013). The WU-Minn Human connectome project: An overview. Neuroimage, 80, 6279.CrossRefGoogle ScholarPubMed
Van Essen, D. C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T. E. J., Bucholz, R., … WU-Minn HCP Consortium. (2012). The human connectome project: A data acquisition perspective. Neuroimage, 62(4), 22222231.CrossRefGoogle ScholarPubMed
Wang, L., Zou, F., Shao, Y., Ye, E., Jin, X., Tan, S., … Yang, Z. (2014). Disruptive changes of cerebellar functional connectivity with the default mode network in schizophrenia. Schizophrenia Research, 160(1–3), 6772.CrossRefGoogle Scholar
Whitfield-Gabrieli, S., Thermenos, H. W., Milanovic, S., Tsuang, M. T., Faraone, S. V., McCarley, R. W., … Seidman, L. J. (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proceedings of the National Academy of Sciences, pnas–0809141106.CrossRefGoogle Scholar
Wilson, J. D., Cranmer, S., & Lu, Z.-L. (2020). A hierarchical latent space network model for population studies of functional connectivity. Computational Brain & Behavior, 116. doi: 10.1007/s42113-020-00080-0Google Scholar
Wilson, J. D., Palowitch, J., Bhamidi, S., & Nobel, A. B. (2017a). Community extraction in multilayer networks with heterogeneous community structure. The Journal of Machine Learning Research, 18(1), 54585506.Google ScholarPubMed
Wilson, J. D., Denny, M. J., Bhamidi, S., Cranmer, S. J., & Desmarais, B. A. (2017b). Stochastic weighted graphs: Flexible model specification and simulation. Social Networks, 49, 3747.CrossRefGoogle Scholar
Woodward, N. D., Rogers, B., & Heckers, S. (2011). Functional resting-state networks are differentially affected in schizophrenia. Schizophrenia Research, 130(1–3), 8693.CrossRefGoogle Scholar