Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T10:44:09.711Z Has data issue: false hasContentIssue false

Towards a balanced 3D kinematic model of a faulted domain - the Bergheim open pit mine, Lower Rhine Basin

Published online by Cambridge University Press:  01 April 2016

A. Thomsen
Affiliation:
Geologisches Institut, Bonn University, Nußallee 8, 53115 Bonn, Germany
A. Siehl*
Affiliation:
Geologisches Institut, Bonn University, Nußallee 8, 53115 Bonn, Germany
*
2corresponding author; e-mail: siehl@uni-bonn.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the context of the investigation of the sedimentary and structural evolution of the Cenozoic Lower Rhine Basin, the construction of a volume-balanced kinematic model of a small faulted domain with detailed spatial information on strata and fault geometry from a set of parallel geological sections is under development. A 3D geometry model is built that allows for relative movements of blocks at fault surfaces. Rouby’s method of restoration in the map plane is used to determine horizontal displacement fields. The 3D and 3D(t) geometry models are supported by the object-oriented geometry database tool GeoToolKit for storage and retrieval of selected parts of the model using queries referring to spatial and temporal criteria, while visualization is based on key frame technique.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2002

References

Alms, R., Balovnev, O., Breunig, M., Cremers, A.B., Jentzsch, T. & Siehl, A., 1998. Space-Time Modelling of the Lower Rhine Basin Supported by an Object-Oriented Database. Physics and Chemistry of the Earth 23: 251260.Google Scholar
Balovnev, O., Breunig, M. & Cremers, A.B., 1997. From GeoStore to GeoToolKit: The second step. In: Scholl, M. & Voisard, A. (eds): Advances in Spatial Databases, Proceedings of the 5th Intern. Symposium on Spatial Databases (SSD 97), Berlin, July 1997, LNCS 1262. Springer Verlag (Berlin): 223237.Google Scholar
Balovnev, O., Breunig, M., Cremers, A.B. & Shumilov, S., 2000. Extending GeoToolKit to Access Distributed Spatial Data and Operations. In: Proc. of 12th International Conference on Scientific and Statistical Database Management, Berlin, June 2000.Google Scholar
Breunig, M., Balovnev, O., Cremers, A.B. & Shumilov, S., 2002. Spatial and Temporal Database Support for Geologists - An Example from the Lower Rhine Basin. Netherlands Journal of Geosciences / Geologie en Mijnbouw 81: 251256 (this issue).Google Scholar
Campbell, J., Kümpel, H.-J., Fabian, M., Fischer, D., Görres, B., Keysers, C.J. & Lehmann, K., 2002. Recent movement pattern of the Lower Rhine Basin from tilt, gravity and GPS data. Netherlands Journal of Geosciences / Geologie en Mijnbouw 81: 223230 (this issue).Google Scholar
Dethloff, R., 1993. Untersuchungen und Modellrechnungen zur tektonischen Entwicklung im Gebiet des Tagebaus Bergheim (MittlererVillerücken/Niederrheinische Bucht). Univ. Bonn, un-publ. Diploma Thesis: 171 pp.Google Scholar
GOCAD (1997): GOCAD++1.4 User’s Manual. ASGA, ENSG Nancy.Google Scholar
GOCAD (1999): GOCAD Tech. Documentation, http://www.en-sg.u-na.ncv.fr/GOCAD.Google Scholar
GRAPE (1997): GRAPE - GRAphics Programming Environment- Manual: 382 pp., Version 5.3 (http://www.iam.uni-bonn.de/sfb256/grape).Google Scholar
Jentzsch, T. & Siehl, A., 1999. From Palinspastic Reconstruction to Kinematic Basin Models. 19th GOCAD meeting, June 1999, Nancy: 6 pp.Google Scholar
Jentzsch, T. & Siehl, A., 2002. Kinematic subsidence modelling of the Lower Rhine Basin. Netherlands Journal of Geosciences / Geologie en Mijnbouw 81: 231239 (this issue).Google Scholar
Klesper, C. 1994. Die rechnergestützte Modellierung eines 3D-Flächenverbandes der Erftscholle (Niederrheinische Bucht). Berliner Geowiss. Abh. B 22: 117 pp.Google Scholar
Klostermann, J., 1983. Die Geologie der Krefelder Scholle. Geologisches Jahrbuch A 66: 3115.Google Scholar
Mallet, J.L., 1992. GOCAD: a Computer Aided Design Program for Geological Applications. In: Turner, A.K. (ed.): Three-Di-mensional Modelling with Geoscientific Information Systems. NATO ASI Series C. Kluwer Academic Publishers (Dordrecht): 123141.Google Scholar
Plein, E., Dörholt, W. & Greiner, G., 1982. Das Krefelder Gewölbe in der Niederrheinischen Bucht - Teil einer großen Horizontalverschiebungszone? Fortschritte in der Geologie von Rheinland und Westfalen 30: 1529.Google Scholar
Polthier, K. & Rumpf, M., 1995. A Concept for Time-Dependent Processes. In: Goebel, M., Müller, H. & Urban, B. (eds) : Visualization in Scientific Computing: 137153.Google Scholar
Pongratz, E., 1999. Geologische Strukturmodellierung des Tagebaus Bergheim (Niederrheinische Bucht). Univ. Bonn, unpubl. Diploma Thesis: 85 pp.Google Scholar
Quitzow, H.W. & Vahlensieck, O., 1955. Über pleistozäne Gebirgsbildung und rezente Krustenbewegungen in der Niederrheinischen Bucht. Geologische Rundschau 43: 5667.Google Scholar
Rouby, D., Souriot, Th., Brun, J.P. & Cobbold, P.R., 1996. Displacements, strains, and rotations within the Afar Depression (Djibouti) from restoration in map view.Tectonics 15: 952965.Google Scholar
Rouby, D., Xiao, H. & Suppe, J., 2000. 3-D Restoration of complexly folded and faulted surfaces using multiple unfolding mechanisms. American Association of Petroleum Geologists Bulletin 84: 805829.Google Scholar
Schreiber, U. & Rotsch, S., 1998. Cenozoic block rotation according to a conjugate shear system in Central Europe - indications from palaeomagnetic measurements. Tectonophysics 299: 111142.Google Scholar
Seidemann, R., 1993. Untersuchungen zur Tektonik der Niederrheinischen Bucht. Univ. Bonn, unpubl. Diploma Thesis: 246 pp.Google Scholar
Thomsen, A., Jentzsch, T. & Siehl, A., 1998. Towards a balanced Kinematic Model of a Faulted Domain in the Lower Rhine Basin. GOCAD ENSG Conference on 3D Modelling of Natural Objects: A Challenge for the 2000 ‘s, June 1998, Nancy: 12 pp.Google Scholar
Waltham, D., 1989. Finite Difference Modelling of Hangingwall Deformation. Journal of Structural Geology 11: 433437.Google Scholar
White, N., Jackson, J.A. & McKenzie, D.P., 1986. The Relationship between the Geometry of Normal Faults and that of the Sedimentary Layers in their Hanging Walls. Journal of Structural Geology 8: 897909.Google Scholar