Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T20:34:05.007Z Has data issue: false hasContentIssue false

Stratigraphy and integrated facies analysis of the Saalian and Eemian sediments in the Amsterdam-Terminal borehole, the Netherlands

Published online by Cambridge University Press:  01 April 2016

Robert J. W. van Leeuwen*
Affiliation:
Netherlands Institute of Applied Geoscience TNO – National Geological Survey, P.O. Box 80015, NL 3508 TA UTRECHT, the Netherlands
Dirk J. Beets
Affiliation:
Netherlands Institute of Applied Geoscience TNO – National Geological Survey, P.O. Box 80015, NL 3508 TA UTRECHT, the Netherlands
J.H. Aleid Bosch
Affiliation:
Netherlands Institute of Applied Geoscience TNO – National Geological Survey, P.O. Box 511, NL 8000 AM ZWOLLE, the Netherlands
Adri W. Burger
Affiliation:
Netherlands Institute of Applied Geoscience TNO – National Geological Survey, P.O. Box 80015, NL 3508 TA UTRECHT, the Netherlands
Piet Cleveringa
Affiliation:
Netherlands Institute of Applied Geoscience TNO – National Geological Survey, P.O. Box 80015, NL 3508 TA UTRECHT, the Netherlands
Dick van Harten
Affiliation:
Faculty of Earth Sciences, Free University, De Boelelaan 1085, NL 1081 HV AMSTERDAM, the Netherlands
G.F. Waldemar Herngreen
Affiliation:
Netherlands Institute of Applied Geoscience TNO – National Geological Survey, P.O. Box 80015, NL 3508 TA UTRECHT, the Netherlands
Rink W. Kruk
Affiliation:
Faculty of Earth Sciences, Free University, De Boelelaan 1085, NL 1081 HV AMSTERDAM, the Netherlands
Cor G. Langereis
Affiliation:
Department of Geophysics, Faculty of Earth Sciences, University of Utrecht, P.O. Box 80021, NL 3508 TA UTRECHT, the Netherlands
Tom Meijer
Affiliation:
Netherlands Institute of Applied Geoscience TNO – National Geological Survey, P.O. Box 80015, NL 3508 TA UTRECHT, the Netherlands
Ronald Pouwer
Affiliation:
Netherlands Institute of Applied Geoscience TNO – National Geological Survey, P.O. Box 80015, NL 3508 TA UTRECHT, the Netherlands
Hein de Wolf
Affiliation:
Netherlands Institute of Applied Geoscience TNO – National Geological Survey, P.O. Box 80015, NL 3508 TA UTRECHT, the Netherlands

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Amsterdam glacial basin was a major sedimentary sink from late Saalian until late Eemian (Picea zone, E6) times. The basin’s exemplary record makes it a potential reference area for the last interglacial stage. The cored Amsterdam-Terminal borehole was drilled in 1997 to provide a record throughout the Eemian interglacial. Integrated facies analysis has resulted in a detailed reconstruction of the sedimentary history.

After the Saalian ice mass had disappeared from the area, a large, deep lake had come into being, fed by the Rhine river. At the end of the glacial, the lake became smaller because it was cut off from the river-water supply, and eventually only a number of shallow pools remained in the Amsterdam basin. During the early Eemian (Betula zone, El), a seepage lake existed at the site. The lake deepened under the influence of a steadily rising sea level and finally evolved into a silled lagoon (late Quercus zone, E3). Initially, the lagoon water had fairly stable stratification, but as the sea level continued to rise the sill lost its significance, the lagoon becoming well mixed by the middle of the Corylus/Taxus zone (E4b). The phase of free exchange with the open sea ended in the early Carpinus zone (E5), when barriers developed in the sill area causing the lagoon to become stratified again. During the Late Eemian (late E5), a more dynamic system developed. The sandy barriers that had obstructed exchange with the open sea were no longer effective, and a tidally-influenced coastal lagoon formed.

The Eemian sedimentary history shown in the Amsterdam-Terminal borehole is intimately connected with the sea-level history. Because the site includes both a high-resolution pollen signal and a record of sea-level change, it has potential for correlation on various scales. Palaeomagnetic results show that the sediments predate the Blake Event, which confirms that this reversal excursion is relatively young. The U/Th age of the uppermost part of the Eemian sequence is 118.2±6.3 ka.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2000

References

Bijlsma, S., 1981. Fluvial sedimentation from the Fennoscandian area into the North-West European Basin during the Cenozoic. In: Van Loon, A.J. (ed.): Quaternary geology: a farewell to A J. Wiggers. Geologie en Mijnbouw 60: 337345.Google Scholar
Brockmann, C., 1928. Die Diatomeen im marinen Quartär Hollands. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 41:373.Google Scholar
Cleve-Euler, A., 1951. Die Diatomeen von Schweden und Finn-land. Kungliga Svenska Vetenskapsakademiens Handlingar, Fjärde Serien 2 (1): 163 pp.Google Scholar
Cleveringa, P., Meijer, T., Van Leeuwen, R.J.W., De Wolf, H., Pouwer, R. Lissenberg, T. & Burger, A.W., 2000. The Eemian type locality at Amersfoort in the central Netherlands: redeployment of old and new data. In: Van Kolfschoten, Th. & Gibbard, PL. (eds.): The Eemian – local sequences, global perspectives. Geologie en Mijnbouw / Netherlands Journal of Geosciences 79: 197216 (this issue).Google Scholar
Cremer, H., 1998. Die Diatomeen der Laptevsee (Arktischer Ozean) : Taxonomie und biogeographische Verbreitung. Berichte zur Polarforschung 260: 1205.Google Scholar
Dankers, P.H.M. & Zijderveld, J.D.A., 1981. Alternating field demagnetization of rocks, and the problem of gyromagnetic rema-nence. Earth and Planetary Science Letters 53: 8992.CrossRefGoogle Scholar
De Gans, W., De Groot, Th. & Zwaan, H., 1987. The Amsterdam glacial basin, a case study of a glacial basin in The Netherlands. In: Van der Meer, J.J.M. (ed.): Tills and glaciotectonics – Proceedings INQUA Symposium on the genesis and lithology of glacial deposits (1986). Balkema (Rotterdam): 205216.Google Scholar
De Gans, W., Beets, DJ. & Centineo, M.C., 2000. Late Saalian and Eemian deposits in the Amsterdam glacial basin. In: Van Kolfschoten, Th. & Gibbard, P.L. (eds.): The Eemian – local sequences, global perspectives. Geologie en Mijnbouw / Netherlands Journal of Geosciences 79: 147160 (this issue).Google Scholar
De Vernal, A., Londeix, L., Mudie, P.J., Harland, R., Morzadec-Kerfourn, M.T., Turon, J.-L. & Wrenn, J.H., 1992. Quaternary organic-walled dinoflagellate cysts of the North Atlantic Ocean and adjacent seas: ecostratigraphy and biostratigraphy. In: Head, M.J. & Wren, J.H. (eds.): Neogene and Quaternary dinoflagellate cysts and acritarchs. AASP Foundation (Dallas): 289328.Google Scholar
De Wolf, H. & Cleveringa, P., 1994. Eemian diatom floras in the Amsterdam glacial basin. In: Marino, D. & Montresor, M. (eds.): Proceedings 13th International Diatom Symposium (Biopress, Bristol): 489505.Google Scholar
Edwards, L.E. & Andrle, V.A.S., 1992. Distribution of selected dinoflagellate cysts in modern marine sediments. In: Head, M.J. & Wren, J.H. (eds.): Neogene and Quaternary dinoflagellate cysts and acritarchs. AASP Foundation (Dallas): 259288.Google Scholar
Foged, N., 1974. Fresh water diatoms in Iceland. Bibliotheca phycologica 15: 1118.Google Scholar
Fretter, V. & Graham, A., 1978. The prosobranch molluscs of Britain and Denmark, 4 Marine Rissoacea. Journal of Molluscan Studies 6: 153241.Google Scholar
Grönlund, T., 1991. The diatom stratigraphy of the Eemian Baltic Sea on the basis of sediment discoveries in Ostrabothnia, Finland. Ph.D. thesis University of Helsinki: 131 pp.Google Scholar
Harland, R., 1983. Distribution maps of recent dinoflagellate cysts in bottom sediments from the North Atlantic Ocean and adjacent seas. Palaeontology 26: 321387 Google Scholar
Harting, P., 1874. De bodem van het Eemdal. Verslagen en Med-edelingen van de Koninklijke Akademie van Wetenschappen, afdeling Natuurkunde II 8: 282290.Google Scholar
Harting, P., 1875. Le système Eemien. Archives Néerlandaises des Sciences Exactes et Naturelles de Société Hollandaise de Sciences à Harlem 10: 443454.Google Scholar
Jelgersma, S. & Breeuwer, J.B., 1975. Toelichting bij de kaart glaciale verschijnselen gedurende het Saalien, 1:600.000. In: Za-gwijn, W.H. & Van Staalduinen, C.J. (eds.): Toelichting bij geologische overzichtskaarten van Nederland. Rijks Geologische Dienst (Haarlem): 93103.Google Scholar
Jessen, K. & Milthers, V., 1928. Stratigraphical and palaeontologi-cal studies of inter-glacial freshwater deposits in Jutland and northwest Germany. Danmarks Geologiske Undersøgelse II 48: 1379.Google Scholar
Jorissen, F.J., 1988. Benthic foraminifera from the Adriatic Sea; principles of phenotypic variation. Utrecht Micropaleontological Bulletin 37: 176 pp.Google Scholar
Knudsen, K.-L., 1982. Foraminifers. In: Olausson, E. (ed.): The Pleistocene/Holocene boundary in south-western Sweden. Sveriges Geologiska Undersökning C 794: 148177.Google Scholar
Knudsen, K.-L., 1985. Foraminiferal faunas in Eemian deposits of the Oldenbüttel area near Kiel Canal, Germany. Geologisches Jahrbuch A 86:2747.Google Scholar
Konert, M. & Vandenberghe, J., 1997. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for an underestimation of the clay fraction. Sedimentology 44: 523535.CrossRefGoogle Scholar
Konradi, P. B., 1976. Foraminifera in Eemian deposits at Sten-sigmose, southern Jutland. Danmarks Geologiske Undersogelse II 105: 155.Google Scholar
Lafrenz, H.R., 1963. Foraminiferen aus dem Riss-Würm-Inter-glazial (Eem) in Schleswig-Holstein. Meyniana 13: 1046.Google Scholar
Langereis, C.G., Dekkers, M.J., De Lange, G.J., Paterne, M. & Santvoort, P.J.M., 1997. Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern Mediterranean piston core and dating of short events in the Brunhes. Geophysical Journal International 129: 7594.CrossRefGoogle Scholar
Ludwig, K.R. & Titterington, D.M., 1994. Calculation of 230Th/U isochrons, ages, and errors. Geochimica et Cosmochimica Acta 58:50315042.CrossRefGoogle Scholar
Lutze, G.F., 1965. Zur Foraminiferen-Fauna der Ostsee. Meyniana 15:75142.Google Scholar
Mangerud, J., Sønstegaard, E. & Sejrup, H.-P., 1979. Correlation of the Eemian (interglacial) stage and the deep-sea oxygen-isotope stratigraphy. Nature 277: 189192.CrossRefGoogle Scholar
Matoba, Y., 1970. Distribution of recent shallow water foraminifera of Matsushima Bay, Miyagi Prefecture, Northeast Japan. Scientific Reports of the Tohoku University, Sendai, 2nd series 42: 185.Google Scholar
Munsterman, D.K. & Kerstholt, S.J., 1996. Sodium polytungstate, a new non-toxic alternative to bromoform in heavy liquid separation. Review of Palaeobotany and Palynology 91: 417422.CrossRefGoogle Scholar
Nowaczyk, N.R., Frederichs, T.W., Eisenhauer, A. & Gard, G., 1994. Magnetostratigraphic data from late Quaternary sediments from the Yermak Plateau, Arctic Ocean: Evidence for four geomagnetic polarity events within the last 170 Ka of the Brunhes chron. Geophysical Journal International 117: 453471.CrossRefGoogle Scholar
Osmond, J.K., May, J.P. & Tanner, W.F., 1970. Age of the Cape Kennedy barrier-and-lagoon complex. Journal of Geophysical Research 75: 469479.Google Scholar
Paasche, E., 1975. Growth of the plankton diatom Thalassiosira nordenskioeldii Cleve at low silica concentrations. Journal of Experimental Marine Biology and Ecology 18: 173183.CrossRefGoogle Scholar
Rasmussen, E., 1973. Systematics and ecology of the Isefjord marine fauna. Ophelia 11:1495.CrossRefGoogle Scholar
Reinders, J. & Hambach, U., 1995. A geomagnetic event recorded in loess deposits of the Tõnchesberg (Germany): identification of the Blake magnetic polarity episode. Geophysical Journal International 122:407418.Google Scholar
Stoermer, E.F., 1980. Characteristics of benthic algal communities in the upper Great Lakes. U.S. Environmental Protection Agency, Ecological Series EPA 600/3–80-073: 72 pp.CrossRefGoogle Scholar
Uffenorde, H., 1982. Zur Gliederung des klastischen Holozäns immittleren und nordwestlichen Teil der Deutschen Bucht (Nord-see) unter besonderer Berücksichtigung der Foraminiferen. Eiszeitalter und Gegenwart 32: 177202.Google Scholar
Van den Berg, M.W. & Beets, D.J., 1987. Saalian glacial deposits and morphology in The Netherlands. In: Van der Meer, J.J.M. (ed.): Tills and glacio tectonics. Proceedings INQUA Symposium on the genesis and lithology of glacial deposits (1986). Balkema (Rotterdam): 235251.Google Scholar
Van der Wateren, F.M., 1985. A model of glacial tectonics, applied to the ice-pushed ridges in the central Netherlands. Bulletin of the Geological Society of Denmark 34: 5574.CrossRefGoogle Scholar
Van Hoof, A.A.M. & Langereis, C.G., 1991. Reversal records in marine marls and delayed acquisition of remanent magnetization. Nature 351: 223225.CrossRefGoogle Scholar
Van Voorthuysen, J.H., 1957. Foraminiferen aus dem Eemien (Riss-Würm-Interglazial) in der Bohrung Amersfoort I (Locus typicus). Mededelingen Geologische Stichting 11: 2839.Google Scholar
Zagwijn, W.H., 1961. Vegetation, climate and radiocarbon datings in the Late Pleistocene of The Netherlands, Part I: Eemian and Early Weichselian. Mededelingen Geologische Stichting 14:1545.Google Scholar
Zagwijn, W.H., 1974. Palaeogeographic evolution of The Netherlands during the Quaternary. Geologie en Mijnbouw 53: 369385.Google Scholar
Zagwijn, W.H., 1975. Indeling van het Kwartair op grond van ve-randeringen in vegetatie en klimaat. In: Zagwijn, W.H. & Van Staalduinen, C.J. (eds.): Toelichting bij geologische overzicht-skaarten van Nederland. Rijks Geologsiche Dienst (Haarlem): 109114.Google Scholar
Zagwijn, W.H., 1983. Sea-level changes in The Netherlands during the Eemian. Geologie en Mijnbouw 62: 437450.Google Scholar
Zagwijn, W.H., 1992 Migration of vegetation during the Quaternary in Europe. Courier Forschungs-Institut Senckenberg 153: 920.Google Scholar
Zagwijn, W.H., 1996. An analysis of Eemian climate in western and central Europe. Quaternary Science Reviews 15: 451469.CrossRefGoogle Scholar
Zandstra, J.G., 1978. Einführung in die Feinkiesanalyse. Der Geschiebesammler 12: 2138.Google Scholar