Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T05:25:27.010Z Has data issue: false hasContentIssue false

Palaeoecological study of a Weichselian wetland site in the Netherlands suggests a link with Dansgaard-Oeschger climate oscillation

Published online by Cambridge University Press:  24 March 2014

B. van Geel*
Affiliation:
Institute for Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam, Science Park 904, P.O. Box 94248, 1090 GE Amsterdam, the Netherlands
J.A.A. Bos
Affiliation:
Department of Palaeoclimatology and Geomorphology, Vrije Universiteit, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlandsalso at ADC Archeoprojecten, Nijverheidsweg-Noord 114, 3812 PN Amersfoort, the Netherlands
J. van Huissteden
Affiliation:
Section Hydrology and Geo-Environmental Sciences, Vrije Universiteit, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
J.P. Pals
Affiliation:
Amsterdams Archeologisch Centrum, Universiteit van Amsterdam, Turfdraagsterpad 9, 1012 XT Amsterdam, the Netherlands
H. Schatz
Affiliation:
Institut für Ökologie, Leopold Franzens Universität, Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
J.M. van Mourik
Affiliation:
Institute for Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam, Science Park 904, P.O. Box 94248, 1090 GE Amsterdam, the Netherlands
G.B.A. van Reenen
Affiliation:
Institute for Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam, Science Park 904, P.O. Box 94248, 1090 GE Amsterdam, the Netherlands
J. Wallinga
Affiliation:
Netherlands Centre for Luminescence dating, Delft University of Technology, Mekelweg 15, NL-2629 JB Delft, the Netherlands
J. van der Plicht
Affiliation:
Center for Isotope Research, Groningen University, Nijenborgh 4, 9747 AG Groningen, the Netherlandsalso at Faculty of Archaeology, Leiden University, P.O. Box 9515, 2300 RA Leiden, the Netherlands

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Botanical microfossils, macroremains and oribatid mites of a Weichselian interstadial deposit in the central Netherlands point to a temporary, sub-arctic wetland in a treeless landscape. Radiocarbon dates and OSL dates show an age between ca. 54.6 and 46.6 ka cal BP. The vegetation succession, starting as a peat-forming wetland that developed into a lake, might well be linked with a Dansgaard-Oeschger climatic cycle. We suggest that during the rapid warming at the start of a D-O cycle, relatively low areas in the landscape became wetlands where peat was formed. During the more gradual temperature decline that followed, evaporation diminished; the wetlands became inundated and lake sediments were formed. During subsequent sub-arctic conditions the interstadial deposits were covered with wind-blown sand. Apart from changes in effective precipitation also the climate-related presence and absence of permafrost conditions may have played a role in the formation of the observed sedimentological sequence from sand to peat, through lacustrine sediment, with coversand on top. The Wageningen sequence may correspond with D-O event 12, 13 or 14. Some hitherto not recorded microfossils were described and illustrated.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2010

References

Aerts, A.T., Van der Plicht, J. & Meijer, H.A.J., 2001. Automatic AMS sample combustion and CO2 collection. Radiocarbon 43: 293298.CrossRefGoogle Scholar
Aleksandrova, V.D., 1988. Vegetation of the Sovjet Polar Deserts. Cambridge University Press (Cambridge).Google Scholar
Ampel, L., Bigler, C., Wohlfarth, B., Risberg, J., Lotter, A.F. & Veres, D., 2010. Modest summer temperature variability during D0 cycles in western Europe. Quaternary Science Reviews 29: 13221327.Google Scholar
Behre, K.E. & Van der Plicht, J., 1992. Towards an absolute chronology for the last glacial period in Europe: radiocarbon dates from Oerel, northern Germany. Vegetation History and Archaeobotany 1: 111117.Google Scholar
Brinkkemper, O., Van Geel, B. & Wiegers, J., 1987. Palaeoecological study of a Middle-Pleniglacial deposit from Tilligte, the Netherlands. Review of Palaeobotany and Palynology 51: 235269.Google Scholar
Bohncke, S.J.P, Bos, J.A.A., Engels, E., Heiri, O. & Kasse, C., 2008. Rapid climatic events as recorded in Middle Weichselian thermokast lake sediments. Quaternary Science Reviews 27: 162174.Google Scholar
Bos, J.A.A., Bohncke, S.J.P., Kasse, C. & Vandenberghe, J., 2001. Vegetation and climate during the Weichselian Early Glacial and Pleniglacial in the Niederlausitz, eastern Germany – macrofossil and pollen evidence. Journal of Quaternary Science 16: 269289.CrossRefGoogle Scholar
Bos, J.A.A., Helmens, K.F., Bohncke, S.J.P., Seppä, H. & Birks, H.J.B., 2009. Flora, vegetation and climate near Sokli, northern Fennoscandia, during the Weichselian Middle Pleniglacial: palynological and macrofossil investigations. Boreas 38: 335348.CrossRefGoogle Scholar
Bos, J.A.A., Bohncke, S.J.P., Kasse, K., Seppä, H., Schokker, J., Wallinga, J. & Van der Plicht, J. (in prep.). Abrupt climatic events during OIS-3 recorded in terrestrial sediments in the Netherlands: a multi-proxy approach.Google Scholar
Buitendijk, A.M., 1945. Voorloopige Catalogus van de Acari in de Collectie Oudemans. Zoölogische Mededelingen 24: 281391.Google Scholar
Busschers, F.S., Kasse, C., Van Balen, R.T., Vandenberghe, J., Cohen, K.M., Weerts, H.J.T., Wallinga, J., Johns, C., Cleveringa, P. & Bunnik, F.P.M., 2007. Late Pleistocene evolution of the Rhine-Meuse system in the southern North Sea basin: imprints of climate change, sea-level oscillation and glacio-isostacy. Quaternary Science Reviews 26: 32163248.Google Scholar
Bøtter-Jensen, L., Andersen, C.E., Duller, G.A.T. & Murray, A.S., 2003. Developments in radiation, stimulation and observation facilities in luminescence measurements. Radiation Measurements 37: 535541.CrossRefGoogle Scholar
Erickson, J.M., 1988. Fossil oribatid mites as tools for Quarternary palaeoecologists: preservation quality, quantities, and taphonomy. Bulletin of the Buffalo Society of Natural Sciences 33: 207226.Google Scholar
Erickson, J.M., 1996. Can Paleoacarology contribute to global change research? In: Mitchell, R., Horn, D.J., Needham, G.R. & Welbourn, C.W. (eds): Acarology IX – Proceedings, vol. 1, Ohio Biological Survey (Columbus) Ohio: 533537.Google Scholar
Erickson, J.M., Platt, R.B.jr. & Jennings, D.H., 2003. Holocene fossil oribatid mite biofacies as proxies of palaeohabitat at the Hiscock site, Byron, New York. Bulletin of the Buffalo Society of Natural Sciences 37: 176189.Google Scholar
Faegri, K. & Iversen, J., 1989. Textbook of Pollen Analysis. 4th ed. Wiley, Chichester (revised by Faegri, K., Kaland, P.E. and Krzywinski, K.).Google Scholar
Guthrie, R.D., 1990. Frozen fauna of the Mammoth Steppe: the story of Blue Babe. University of Chicago Press (Chicago): 348 p.CrossRefGoogle Scholar
Grimm, E.C., 1992. TILIA and TILIA-graph: pollen spreadsheet and graphics programs. Volume of Abstracts 8th International Palynological Congress, Aixen-Provence: 56 p.Google Scholar
Haesaerts, P., Borziac, I., Chekha, V.P., Chirica, V., Damblon, F., Drozdov, N.I., Orlova, L.A., Pirson, S. & Van der Plicht, J., 2009. Climatic signature and radiocarbon chronology of Middle and Late Pleniglacial loess from Eurasia: comparison with the marine and Greenland records. Radiocarbon 51: 301318.Google Scholar
Helmens, K.F., Bos, J.A.A., Engels, S., Van Meerbeeck, C.J., Bohncke, S.J.P., Renssen, H., Heiri, O., Brooks, S.J., Seppä, H., Birks, H.J.B. & Wohlfarth, B., 2007. Present-day temperatures in northern Scandinavia during the last glaciation. Geology 35: 987990.Google Scholar
Jorgenson, M.T. & Shur, Y.L., 2007. Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle. Journal of Geophysical Research 112, F02S17, doi: 10.1029/2006JF00053.Google Scholar
Karppinen, E. & Koponen, M., 1973. The subfossil Oribatid fauna of Piilonsuo, a bog in Southern Finland. Annales Entomologicae Fennicae 39: 2939.Google Scholar
Karppinen, E. & Koponen, M., 1974. Further observations on subfossil remains of Oribatids (Acari, Oribatei) and insects in Piilonsuo, a bog in southern Finland. Annales Entomologicae Fennicae 40: 172175.Google Scholar
Kasse, C., Bohncke, S.J.P. & Vandenberghe, J., 1995. Fluvial periglacial environments, climate and vegetation during the Middle Weichselian in the Northern Netherlands with special reference to the Hengelo Interstadial. Mededelingen Rijks Geologische Dienst 52: 387414.Google Scholar
Kind, C.-J., 2000. Die jungpleistozänen Rinnenfüllungen von Nußloch (RheinNeckar-Kreis). Archäologische Ausgrabungen in Baden-Württemberg 1999: 1719.Google Scholar
Kolstrup, E., 1980. Climate and stratigraphy in northwest Europe between 30,000 BP and 13,000 BP, with special reference to The Netherlands. Mededelingen Rijks Geologische Dienst 32-15: 181253.Google Scholar
Krivolutsky, D.A., Druk, A.Ja., Eitminaviciute, I.S., Laskova, L.M. & Karppinen, E., 1990. Fossil Oribatid mites. Mokslas Publ., Vilnius: 110 pp. (Orig. Russ.)Google Scholar
Larsen, J., Bjune, A.E. & De la Riva Caballero, A., 2006. Holocene environmental and climate history of Trettetjørn, a low-alpine lake in Western Norway, based on subfossil pollen, diatoms, oribatid mites, and plant macrofossils. Arctic, Antarctic, and Alpine Research 38: 571583.CrossRefGoogle Scholar
Mauquoy, D. & Van Geel, B., 2007. Mire and peat macros. In: Encyclopedia of Quaternary Science, Volume 3 (Elias, S.A., editor) p. 23152336, Elsevier.Google Scholar
Murray, A.S. & Wintle, A.G., 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37: 377381.Google Scholar
Mook, W.G. & Streurman, H.J., 1983. Physical and chemical aspects of Radiocarbon dating. PACT publications 8: 3155.Google Scholar
Mook, W.G. & Van der Plicht, J., 1999. Reporting 14C activities and concentrations. Radiocarbon 41: 227239.Google Scholar
Pals, J.P., Van Geel, B. & Delfos, A., 1980. Paleoecological studies in the Klokkeweel bog near Hoogkarspel (prov. of Noord-Holland). Review of Palaeobotany and Palynology 30: 371418.Google Scholar
Pigott, C.D., 1982. Fine structure of Cenococcum mycorrhizas on Tilia. New Phytologist 92: 501512.Google Scholar
Ran, E.T.H., 1990. Dynamics of vegetation and environment during the Middle Pleniglacial in the Dinkel Valley (the Netherlands). Mededelingen Rijks Geologische dienst 44: 141205.Google Scholar
Ran, E.T.H. & Van Huissteden, J., 1990. The Dinkel valley in the Middle Pleniglacial: dynamics of a tundra river system. Mededelingen Rijks Geologische Dienst 44: 209220.Google Scholar
Ran, E.T.H., Bohncke, S.J.P., Van Huissteden, J. & Vandenberghe, J., 1990. Evidence of episodic permafrost conditions during the Weichselian Middle Pleniglacial in the Hengelo basin (the Netherlands). Geologie en Mijnbouw 44: 207220.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwel, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heat, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., Van der Plicht, J. & Weyhenmeyer, C.E., 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 51: 11111150.CrossRefGoogle Scholar
Schatz, I., Schatz, H., Glaser, F. & Heiss, A., 2002. Subfossile Arthropodenfunde in einer bronzezeitlichen Grabungsstätte bei Radfeld (Tirol, Österreich) (Acari: Oribatida, Insecta, Coleoptera, Hymenoptera: Formicidae). Berichte des naturwissenschaftlich-medizinischen Vereins Innsbruck 89: 249264.Google Scholar
Schelvis, J., 1987. Some aspects of research on mites (Acari) in archeological samples. Palaeohistoria 29: 211218.Google Scholar
Schelvis, J., 1990. The reconstruction of local environments on the basis of remains of oribatid mites (Acari: Oribatida). Journal of Archaeological Science 17: 559572.CrossRefGoogle Scholar
Schelvis, J. & Van Geel, B., 1989. A paleoecological study of the mites (Acari) from a Lateglacial deposit at Usselo (the Netherlands). Boreas 18: 237243.Google Scholar
Schelvis, J. & Ervynck, A., 1992. Mites as ecological indicators in archaeology. A case study in Roman Oudenburg (West Flanders). Archeologie in Vlaanderen II: 175189. (Orig. Dutch)Google Scholar
Sidorchuk, E.A., 2004. Subfossil oribatid mites as the bioindicators of profound environmental change during the holocene. Dokladi Akademii Nauk 396: 710713. (Orig. Russ.)Google Scholar
Siebel, H. & During, H., 2005. Beknopte mosflora van Nederland en België. Stichting Uitgeverij van de Koninklijke Nederlandse Natuurhistorische Vereniging. 560 p.Google Scholar
Solhøy, T., 2001. Oribatid mites. In: Smol, J.P., Birks, J.B., Last, W.M. (eds): Tracking environmental change using lake sediments, vol. 4, Zoological Indicators. Kluwer Academic Publishers (Dordrecht) the Netherlands: 81104.Google Scholar
Solhøy, I. W. & Solhøy, T., 2000. The fossil oribatid mites fauna (Acari: Oribatida) in late-glacial and early-Holocene sediments in Kråkenes Lake, western Norway. Journal of Paleolimnology 23: 3547.CrossRefGoogle Scholar
Touw, A. & Rubers, W.V., 1989. De Nederlandse Bladmossen. Uitgeverij van de Koninklijke Nederlandse Natuurhistorische Vereniging: 532 p.Google Scholar
Van der Hammen, T., Maarleveld, G.C., Vogel, J.C. & Zagwijn, W.H., 1967. Stratigraphy, climatic succession and radiocarbon dating of the last glacial in the Netherlands. Geologie en Mijnbouw 46: 7995.Google Scholar
Van der Plicht, J. & Hogg, A., 2006. A note on reporting Radiocarbon. Quaternary Geochronology 1: 237240.Google Scholar
Van der Plicht, J., Wijma, S., Aerts, A.T., Pertuisot, M.H. & Meijer, H.A.J., 2000. The Groningen AMS facility: status report. Nuclear Instruments and Methods B172: 5865.CrossRefGoogle Scholar
Van Geel, B., 1978. A palaeoecological study of Holocene peat bog sections in Germany and the Netherlands. Review of Palaeobotany and Palynology 25: 1120.CrossRefGoogle Scholar
Van Geel, B., Bohncke, S.J.P. & Dee, H., 1981. A palaeoecological study of an upper Late Glacial and Holocene sequence from ‘De Borchert’, the Netherlands. Review of Palaeobotany and Palynology 31: 367448.Google Scholar
Van Geel, B., Coope, G.R. & Van der Hammen, T., 1989. Palaeoecology and stratigraphy of the Lateglacial type section at Usselo (the Netherlands). Review of Palaeobotany and Palynology 60: 25129.Google Scholar
Van Geel, B. & Aptroot, A., 2006. Fossil ascomycetes in Quaternary deposits. Nova Hedwigia 82: 313329.Google Scholar
Van Huissteden, J., 1990. Tundra rivers of the last glacial: sedimentation and geomorphological processes during the Middle Pleniglacial in Twente, eastern Netherlands. Mededelingen Rijks Geologische dienst 44: 3138.Google Scholar
Van Huissteden, J., Vandenberghe, J., Van der Hammen, T. & Laan, W., 2000. Fluvial and aeolian interaction under permafrost conditions: Weichselian Late Pleniglacial, Twente, eastern Netherlands. Catena 40: 307321.Google Scholar
Van Mourik, J.M. & Slotboom, R.T., 1995. The expression of the tripartition of the Allerød chronozone in the lithofacies of Lateglacial polycyclic profiles in Belgium and the Netherlands. Mededelingen Rijks Geologische Dienst 52: 441450.Google Scholar
Voelker, A.H.L., 2002. Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database. Quaternary Science Reviews 21: 11851212.Google Scholar
Walker, D.A., Bockheim, J.G., Chapin, F.S. III, Eugster, W., Nelson, F.E. & Ping, C.L., 2001. Calcium-rich tundra, wildlife, and the ‘Mammoth Steppe’. Quaternary Science Reviews 20: 149163.Google Scholar
Wallinga, J., Davids, F. & Dijkmans, J.W.A., 2007. Luminescence dating of Netherlands' sediments. Netherlands Journal of Geosciences – Geologie en Mijnbouw 86: 179196.Google Scholar
Weigmann, G., 2006. Hornmilben (Oribatida). Die Tierwelt Deutschlands, 76. Teil. Goecke, Evers, Keltern: 520 pp.Google Scholar
Wiegers, J. & Van Geel, B., 1984. Meesia triquetra (Jolyclerc) Ångstr. in a Late-Glacial peat deposit of Allerød age from Usselo, The Netherlands. Lindbergia 10: 183186.Google Scholar
Wild, V., Schatz, I. & Schatz, H., 2007. Subfossile Arthropodenfunde (Acari: Oribatida, Insecta: Coleoptera) in Mooren bei der Schwarzensteinalm im Oberen Zemmgrund in den Zillertaler Alpen (Österreich). Mitteilungen der Kommission für Quartärforschung der Österreichischen Akademie der Wissenschaften 16: 117131.Google Scholar
Wolff, E.W., Chappelaz, J., Blunier, T., Rasmussen, S.O. & Svensson, A., 2010. Millennial-sale variability during the last glacial: the ice core record. Quaternary Science Reviews 29: 28282838.Google Scholar
Yeloff, D., Mauquoy, D., Barber, K., Way, S., Van Geel, B. & Turney, C.S.M., 2007. Volcanic ash deposition and long-term vegetation change on Subantarctic Marion Island. Arctic, Antarctic and Alpine Research 39: 500511.Google Scholar
Yurtsev, B.A., 2001. The Pleistocene ‘Tundra-Steppe’ and the productivity paradox: the landscape approach. Quaternary Science Reviews 20: 165174.CrossRefGoogle Scholar