Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T01:25:28.280Z Has data issue: false hasContentIssue false

The origin of ‘tauw’, an enigmatic building stone of the Mergelland: a case study of the Hesbaye region, southwest of Maastricht (Belgium)*

Published online by Cambridge University Press:  24 March 2014

M. Dusar*
Affiliation:
Royal Belgian Institute of Natural Sciences, Geological Survey of Belgium, Jennerstraat 13, B-1000 Brussels, Belgium
R. Dreesen
Affiliation:
VITO, Flemish Institute of Technogical Research, Boeretang 200, B-2400 Mol, Belgium
L. Indeherberge
Affiliation:
Werkgroep Krijt & Vuursteeneluvium, Reuvoortweg 63, B-3520 Zonhoven, Belgium
E. Defour
Affiliation:
Werkgroep Krijt & Vuursteeneluvium, Opperstraat 9, B-3550 Heusden-Zolder, Belgium
R. Meuris
Affiliation:
Werkgroep Krijt & Vuursteeneluvium, Lijsterstraat 11, B-2580 Beerzel, Belgium

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The origin of a peculiar type of silicified limestone with nodular flints used in parish churches at Sluizen and Vreren, south of Tongeren (province of Limburg, Belgium), has now been elucidated by the discovery of the same rock type in its natural setting, namely the silicified top of the Cretaceous which underlies Clay-with-flints (‘flint eluvium’) and Oligocene sands in a disused quarry at Elst, municipality of Riemst (Limburg, Belgium). Co-operation between professional geologists and amateur palaeontologists has allowed to characterise this rock type, here referred to as ‘Elst tauw’, both petrographically and palaeontologically. The rich echinoid fauna has also been assessed, on the basis of a comparison with assemblages from the Clay-with-flints at Halembaye (Haccourt/Lixhe, province of Liège, Belgium) and at Zichen-Eben Emael in the Hesbaye region. P.J. Felder's ecozones, based on bioclast assemblages, substantiated by analyses of petrographical biofacies features of the original calcarenite, has allowed lithostratigraphic correlation of the ‘Elst tauw’ with the ‘Roosburg block’, which is a variety of ‘Maastricht stone’. Both methods indicate that the ‘Elst tauw’ developed in beds that can be assigned to the condensed Valkenburg-Schiepersberg interval of the lower Maastricht Formation. Petrographical analysis has shown the ‘Elst tauw’ to be quite distinctive; in addition, its natural occurrence at the Elst quarry matches the building stone records in rock type. The latter stem from the same small area, situated southwest of Maastricht. The major steps in its diagenetic history could be reconstructed, starting with pervasive pyritisation of the calcareous allochems, followed by silicification of the grains and pore spaces (different silica cements that became partially recrystallised), completed by oxidation of pyrite with transformation into limonite and, finally, dissolution of the non-pyritised or partially pyritised skeletal allochems creating a mouldic porosity. Silicification probably was achieved prior to the Oligocene. This particular mode of formation has generated a discussion on the proper use of the vernacular term ‘tauw’, a term used in a different sense by the industry, stratigraphers and students of building stones.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2011

Footnotes

*

In: Jagt, J.W.M., Jagt-Yazykova, E.A. & Schins, W.J.H. (eds): A tribute to the late Felder brothers – pioneers of Limburg geology and prehistoric archaeology.

References

Baele, J.-M., 2010. Mode de formation de la roche silicifiée à bactéries fossiles du Crétacé supérieur du Bassin de Mons (microbialite de Saint-Denis). Académie royale de Belgique, Mémoires de la Classe des Sciences (3)12: 1131.Google Scholar
Bless, M.J.M., Demoulin, A., Felder, P.J., Jagt, J.W.M. & Reynders, J.P.H., 1991. The Hautes Fagnes area (NE Belgium) as a monadnock during the Late Cretaceous. Annales de la Société géologique de Belgique 113 (1990): 75101.Google Scholar
Bosch, P.W., 1989. Voorkomen en gebruik van natuurlijke bouwsteen in Limburg. Grondboor en Hamer 43: 215222.Google Scholar
Carozzi, A.V., 1960. Microscopic sedimentary petrography. John Wiley & Sons (New York/London): 1485.Google Scholar
Carozzi, A.V., 1993. Sedimentary petrography. PTR Prentice-Hall (Englewood Cliffs, NJ): 1263.Google Scholar
Catt, J.A., 1986. The nature, origin and geomorphological significance of clay-with-flints. In: Sieveking, G. & Hart, M.B. (eds): The scientific study of flint and chert. Cambridge University Press (Cambridge): 151159.Google Scholar
Cayeux, L., 1929. Les roches sédimentaires de France. Roches siliceuses. Mémoires pour servir à l'Explication de la Carte géologique détaillée de la France (Paris): 1774.Google Scholar
Claes, S., Frederickx, E., Gullentops, F. & Felder, W., 2001. Kaartblad (34) Tongeren. Schaal 1: 50 000. Toelichtingen bij de geologische kaart van België – Vlaams Gewest. BGD -ANRE/ALBON 34: 155.Google Scholar
Clayton, C.J., 1986. The chemical environment of flint formation in Upper Cretaceous chalks. In: Sieveking, G. & Hart, M.B. (eds): The scientific study of flint and chert. Cambridge University Press (Cambridge): 4554.Google Scholar
Dhondt, A.V., 1979. Tenuipteria geulemensis (Mollusca: Bivalvia), An inoceramid species from the Upper Maastrichtian of the Sint Pietersberg area, the Netherlands. Annales de la Société royale de Zoologie de Belgique 108: 141149.Google Scholar
Dreesen, R., Dusar, M. & Doperé, F., 2002. Atlas Natuursteen in Limburgse monumenten. Provincie Limburg (Genk): 1294.Google Scholar
Dubelaar, C.W., Dusar, M., Dreesen, R., Felder, W.M. & Nijland, T.G., 2006. Maastricht limestone: a regionally significant building stone in Belgium and The Netherlands. Extremely weak, yet time-resistant. In: Fort, R., Alvarez de Buergo, M., Gomez-Heras, M. & Vazques-Calvo, C. (eds): Heritage, weathering and conservation. Taylor & Francis Group (London): 914.Google Scholar
Dusar, M. & Dreesen, R., 2007. Stenen uit het Mergelland. In: Nijland, T.G. (ed.): Authentiek duurzaam/Duurzaam authentiek. Proceedings 2e Vlaams-Nederlandse Natuursteendag, Utrecht. TNO (Delft/Utrecht): 4787.Google Scholar
Dusar, M., Dreesen, R. & De Naeyer, A., 2009. Natuursteen in Vlaanderen, versteend verleden. Kluwer Renovatie & Restauratie (Dordrecht): 1562.Google Scholar
Dusar, M., Lagrou, D., Willems, L., Felder, P.J. & Matthijs, J., 2005. De mergelgrotten van Hinnisdael te Vechmaal (gemeente Heers, Limburgs Haspengouw), een geologische bijdrage tot de studie van het Krijt. Geological Survey of Belgium, Professional Paper 2005/1 (301): 189.Google Scholar
Felder, P.J., 2001. Delfstoffen in Cadier en Keer. Vereniging tot Natuurbehoud Cadier en Keer (Cadier en Keer): 1128.Google Scholar
Felder, P.J. & Felder, W.M., 2008. Vergelijking van lithostratigrafie en bioklasten-ecozonering van de Formatie van Maastricht (laat Maastrichtien), ten westen en oosten van de Maas. Sprekende Bodem 52: 72104.Google Scholar
Felder, W.M., 1975. Lithostratigrafie van het Boven-Krijt en het Dano-Montien in Zuid-Limburg en het aangrenzende gebied. In: Zagwijn, W.H. & van Staalduinen, C.J. (eds): Toelichting bij geologische overzichtskaarten van Nederland. Rijks Geologische Dienst (Haarlem): 6372.Google Scholar
Felder, W.M. & Bosch, P.W., 1998. Geologie van de St. Pietersberg bij Maastricht. Grondboor en Hamer 52: 5364.Google Scholar
Felder, W.M. & Bosch, P.W., 2000. Geologie van Nederland, deel 5. Krijt van Zuid-Limburg. TNO-NITG (Utrecht): 1192.Google Scholar
Hofker, J., 1966. Maestrichtian, Danian and Paleocene Foraminifera. The Foraminifera of the type Maestrichtian in South Limburg, the Netherlands, together with the Foraminifera of the underlying Gulpen Chalk and the overlying calcareous sediments; the Foraminifera of the Dansk Chalk and the overlying Greensands and Clays as found in Denmark. Palaeontographica A, Suppl. 10: 1376.Google Scholar
Indeherberge, L., Strijbos, V. & Geussens, T., 1993. Voorkomen van het vuursteeneluvium uit het Boven-Krijt in het heuvellandschap tussen Zichen (Riemst) en Sluizen (Tongeren). LIKONA Jaarboek 1992: 714.Google Scholar
Indeherberge, L., Bogaerts, D., Geussens, T. & Snellings, J., 1996. Tussen Vechmaal en Kanne: een geologische tocht door het Krijt van Zuidoost-Limburg. LIKONA Jaarboek 1995: 715.Google Scholar
Jagt, J.W.M., 1999. Late Cretaceous-Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium – Part 1: Introduction and stratigraphy. Scripta Geologica 116: 157.Google Scholar
Jaspars, G., 1985. Groéselder Diksjenèr, Supplement. The author (Gronsveld): 116.Google Scholar
Juvigné, E., 1992. Les formations cénozoiques de la carrière C.B.R. du Romont (Eben/Bassenge, Belgique). Annales de la Société géologique de Belgique 115: 159165.Google Scholar
Keuller, L., 1912. Notice sur les pierres à bâtir du terrain crétacé du Limbourg belge et hollandais. Annales de la Société géologique de Belgique 39: B390B399.Google Scholar
Klein, W.C., 1911. Compte rendu de l'excursion de la Société géologique de Belgique à Maestricht et à Geulem, le 11 Juin 1911. Annales de la Société géologique de Belgique 38: B237B242.Google Scholar
Knauth, L.P., 1994. Petrogenesis of chert. In: Heaney, P.J., Prewitt, C.T. & Gibbs, G.V. (eds): Silica. Physical behavior, geochemistry and materials applications. Reviews in Mineralogy 29: 233258.Google Scholar
Lijdsman, P.M.E., 1944. Bouwmaterialen Natuursteen. Leerboek voor het middelbare technische onderwijs en de practijk. Stam Technische Boeken, Culemborg: 1243.Google Scholar
Macar, P., 1947. Tuffeau de Maestricht. Centenaire de l'Association des Ingénieurs sortis de l'Ecole de Liège (A.I.Lg.). Congrès 1947, Section Géologie: 337341.Google Scholar
Quesnel, F., 1997. Cartographie numérique en géologie de surface – Application aux altérites à silex de l'ouest du bassin de Paris. Documents du Bureau des Recherches Géologiques et Minières 263: 1428.Google Scholar
Quesnel, F., Bourdillon, C. & Laignel, B., 1996. Maastrichtien supérieur au Nord-Ouest du Bassin de Paris (France). Témoins résiduels en Seine-Maritime. Comptes Rendus de l'Académie des Sciences de Paris, (IIa)322: 10711077.Google Scholar
Quesnel, F., Catt, J.A., Laignel, B., Bourdillon, C. & Meyer, R., 2003. The Neogene and Quaternary Clay-with-flints north and south of the Channel: comparisons of distribution, age, genetic processes and geodynamics. Journal of Quaternary Science, Special Volume on the Quaternary of the English Channel 18(3–4): 283294.Google Scholar
Slinger, A., Janse, H. & Berends, G., 1982. Natuursteen in monumenten. Rijksdienst voor Monumentenzorg. Bosch & Keuning (Baarn): 1120.Google Scholar
Swennen, R. & Dusar, M., 1997. Diagenesis of Late Cretaceous to Paleocene carbonates in the Rur Valley Graben (Molenbeersel borehole, NE-Belgium). Annales de la Société géologique du Nord (2)5: 215226.Google Scholar
Van den Broek, J.M.M. & Van der Waals, L., 1967. The Late Tertiary peneplain of South Limburg (The Netherlands). Geologie en Mijnbouw 45: 318332.Google Scholar
Van der Ham, R., Indeherberge, L., Defour, E. & Meuris, R., 2006. Zee-egels uit het vuursteeneluvium van Hallembaye (Montagne Saint-Pierre). Staringia 12: 159.Google Scholar
Van der Ham, R.W.J.M., Van Konijnenburg-van Cittert, J.H.A. & Indeherberge, L., 2007. Seagrass foliage from the Maastrichtian type area (Maastrichtian, Danian, NE Belgium, SE Netherlands). Review of Palaeobotany and Palynology 144: 301321.Google Scholar
Walaszczyk, I., Jagt, J.W.M. & Keutgen, N., 2010. The youngest Maastrichtian ‘true’ inoceramids from the Vijlen Member (Gulpen Formation) in northeast Belgium and the Aachen area (Germany). Netherlands Journal of Geosciences 89: 147167.Google Scholar
Weijnen, A.A., 1996. Etymologisch dialectwoordenboek. Van Gorcum (Assen): 1269.Google Scholar