Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T12:49:46.271Z Has data issue: false hasContentIssue false

On the use of flexible spillways to control the discharge ratio of the Rhine in the Netherlands: hydraulic and morphological observations

Published online by Cambridge University Press:  01 April 2016

R.M.J Schielen*
Affiliation:
Ministry of Transport, Public Works and Water Management, Institute for Inland Water Management and Waste Water Treatment, P.O. Box 9072, 6800 ED Arnhem, the Netherlands
P. Jesse
Affiliation:
Ministry of Transport, Public Works and Water Management, Institute for Inland Water Management and Waste Water Treatment, P.O. Box 9072, 6800 ED Arnhem, the Netherlands
L.J. Botwidt
Affiliation:
Ministry of Transport, Public Works and Water Management, Institute for Inland Water Management and Waste Water Treatment, P.O. Box 9072, 6800 ED Arnhem, the Netherlands
*
*Corresponding author. Email:ralph.schielen@rws.nl

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Shortly after the river Rhine enters the Netherlands, it bifurcates into three branches. A predefined, fixed discharge distribution over the bifurcation points is vital, since the dikes are designed with a predefined distribution in mind. Recent observations show that the discharge distribution that is anticipated at design discharge conditions differs from the predefined one. One of the goals of the national program Room for the River is therefore to restore the discharge distribution. To control the hydraulic processes during flood events, the construction of two adaptable spillways in the direct neighbourhood of the bifurcation points is proposed as a possible solution. The spillways are capable of maintaining the proper discharge distribution. They can also act as regulators during the construction phase of the flood managements plans of the project Room for the River. Hence, the discharge ratio and thus the water levels are such that the safety-standards are not violated. The morphological consequences are most probably very small, provided that strong erosion during flood events can be prevented and the autonomous bed degradation stays within reasonable limits.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2007

References

Bertoldi, W., Tubino, M., & Zolezzi, G., 2001. Laboratory measurements on channel bifurcation. In: Proc. IAHR Symp. River, Coastal and Estuarine Morphodynamics, 1014 sept. 2001, Obihiro, Japan.Google Scholar
Bolla Pittaluga, M., Repetto, R & Tubino, M., 2001. Channel bifurcation in one-dimensional models: a physically based nodal point condition. In: Proc. IAHR Symp. River, Coastal and Estuarine Morphodynamics, 1014 sept. 2001, Obihiro, Japan: 305314.Google Scholar
Bolwidt, L.J., Jesse, P. & ten Brinke, W.B.M., 2006. Verdeel en beheers. Morfologische processen rond de IJsselkop. RIZA nota in voorbereiding (in Dutch).Google Scholar
Bulle, H., 1926. Untersuchungen über die Geschiedeableitung bei der Spaltung von Wasserläufen. VDI Verlag, Berlin, (in German).Google Scholar
Frings, R.M., 2005. Sedimenttransport op de IJsselkop. Tijdens hoog en laagwaterperioden on 2002 en 2004. ICG 05/02 (in Dutch),Google Scholar
De Heer, A. & Mosselman, E., 2004. Flow structure and bedload distribution at alluvial diversions. In: River Flow 2004, Greco, Carravetta & Della Morte (eds): 801806.Google Scholar
Delft, Hydraulics, 1969. Splitsingspunt Westervoort. Stroombeelden en zandverdeling. Verslag modelonderzoek. Report M395-II (in Dutch).Google Scholar
Frings, R.M. & Kleinhans, M.G. Complex variations in sediment transport at three large river bifurcations during discharge waves in the river Rhine. Submitted to Sedimentology.Google Scholar
Jagers, H.R.A., 2003. Modelling planform changes in braided rivers, PhD thesis, University of Twente, the Netherlands.Google Scholar
Kleinhans, M.G., Wilbers, A.W.E. & Ten Brinke, W.B.M., 2006. Opposite hysteresis of sand and gravel transport up- and downstream of a bifurcation during a flood in the River Rhine, the Netherlands. Submitted to Netherlands Journal of Geoscience.Google Scholar
Ministry of Transport, Public Works and Water Management, 2001. Hydraulische Randvoorwaarden 2001 voor het toetsen van primaire waterkeringen (in Dutch).Google Scholar
Mosselman, E & Suryadi, F.X., 2005. Morfologische verschijnselen ten gevolge van het project Hondsbroekse Pleij. WL Delft hydraulics. Q3878 (In Dutch)Google Scholar
Schropp, M., 2004. Onzekerheden in de afvoerverdeling bij Maatgevend Hoogwater, RIZA Rapport 2002.047 (in Dutch).Google Scholar
Sloff, C.J., Bernabé, M., & Bauer, T., 2003. On the stability of the Pannerdense Kop river bifurcation. In: Proc. IAHR Symp. River, Coastal and Estuarine Morphodynamics 2003, Sanches-Arcilla & Bateman (eds): pubi. IAHR, (Madrid): 10011011.Google Scholar
Ten Brinke, W.B.M., 1998. The importance of large-magnitude floods for longterm sediment transport and morphodynamics in the Dutch Rhine river system. In: Kroon, & Ruessink, (eds): Geographical developments in coastal morphodynamics, Utrecht University.Google Scholar
Ten Brinke, W.B.M., 2005. The Dutch Rhine; A restrained river. Veen Magazines Diemen. ISBN 9076988919.Google Scholar
Ten Brinke, W.B.M. Bolwidt, J.L., Snippe, E. & Van Hal, L.W.J., 2001. Sedimentbalans Rijntakken 2000. Een actualisatie van de sedimentbalans voor slib, zand en grind van de rijntakken in het beheergebeid van de directie Oost Nederland. RIZA report 2001.043 (in Dutch).Google Scholar
Ten Brinke, W.B.M. & Gölz, E., 2001. Bed level changes and sediment budget of the Rhine near the German-Dutch border. RIZA-report 2001.044 (in Dutch).Google Scholar
Van de Ven, G.P., (ed), 2004. Man-made lowlands. History of water management and land reclamation in the Netherlands. Matrijs, Utrecht, the Netherlands.Google Scholar
Van de Ven, G.P., 1976. Aan de wieg van Rijkswaterstaat. Wordingsgeschiedenis van het Pannerdens kanaal. Gelderse historische reeks (in Dutch).Google Scholar
Van Vuren, S., 2005. Stochastic modeling of rivier morphodynamics, thesis Delft University of technology, the Netherlands.Google Scholar
Wang, Z.B., Fokking, R.J., De Vries, M. & Langerak, A., 1995. Stability of river bifurcations in ID morphodynamic models. Journal of Hydraulic Research, IAHR, Vol. 33, No. 6: 739750.Google Scholar