Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T13:06:49.092Z Has data issue: false hasContentIssue false

Late Pleistocene variations of the background aeolian dust concentration in the Carpathian Basin: an estimate using decomposition of grain-size distribution curves of loess deposits

Published online by Cambridge University Press:  24 March 2014

G. Varga
Affiliation:
Geographical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Budaörsi út 45, H-1112 Budapest, Hungary
J. Kovács*
Affiliation:
Department of Geology, University of Pécs, Ifjúság u. 6, H-7624 Pécs, Hungary Institute of Applied Geology, BOKU, Peter Jordan Str. 70, A-1190 Vienna, Austria
G. Újvári
Affiliation:
Geodetic and Geophysical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Csatkai E. u. 6–8, H-9400 Sopron, Hungary

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Aeolian dust deposits can be considered as one of the most important archives of past climatic changes. Alternating loess and paleosol strata display variations of the dust load in the Pleistocene atmosphere. By using the observations of recent dust storms, we are able to employ Late Pleistocene stratigraphic datasets (with accurate chronological framework) and detailed granulometric data for making conclusions on the atmospheric dust load in the past. Age-depths models, created from the absolute age data and stratigraphic interpretation, allow us to calculate sedimentation rates and dust fluxes, while grain-size specifies the dry-deposition velocity, i.e. the atmospheric residence time of mineral particles. Thus, the dust concentration can be expressed as the quotient of the dust flux and gravitational settling velocity. Recent observations helped to clarify the mechanisms behind aeolian sedimentation and the physical background of this process has nowadays been well established. Based on these two, main contrasting sedimentary modes of dust transport and deposition can be recognised: the short suspension episodes of the coarse (silt and very fine sand) fraction and the long-range transport of a fine (clay and fine silt) component. Using parametric curve fitting the basic statistical properties of these two sediment populations can be revealed for Pleistocene aeolian dust deposits, as it has been done for loess in Hungary. As we do not have adequate information on the magnitude and frequency of the Pleistocene dust storms, conclusions could only be made on the magnitude of continuous background dust load. The dust concentration can be set in the range between 1100 and 2750 μg/m3. These values are mostly higher than modern dust concentrations, even in arid regions. Another interesting proxy of past atmospheric conditions could be the visibility, being proportional to the dust concentration. According to the known empirical dust concentration – visibility equations, its value is around 6.5 to 26 kilometres.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2013

References

Antoine, P., Rousseau, D.D., Fuchs, M., Hatté, C., Gauthier, C., Marković, S.B., Jovanović, M., Gaudenyi, T., Moine, O. & Rossignol, J., 2009. High-resolution record of the last climatic cycle in the southern Carpathian Basin (Surduk, Vojvodina, Serbia). Quaternary International 198: 1936.CrossRefGoogle Scholar
Bokhorst, M.P., Beets, C.J., Markovic, S.B., Gerasimenko, N.P., Matviishina, Z.N. & Frechen, M., 2009. Pedo-chemical climate proxies in Late Pleistocene Serbian-Ukranian loess sequences. Quaternary International 198: 113123.CrossRefGoogle Scholar
Bokhorst, M.P., Vandenberghe, J., Sümegi, P., Lanczont, M., Gerasimenko, N.P., Matviishina, Z.N., Markovic, S.B. & Frechen, M., 2011. Atmospheric circulation patterns in central and eastern Europe during the Weichselian Pleniglacial inferred from loess grain-size records. Quaternary International 234: 6274.CrossRefGoogle Scholar
Buggle, B., Glaser, B., Zöller, L., Hambach, U., Markovic, S., Glaser, I. & Gerasimenko, N., 2008. Geochemical characterisation and origin of south-eastern and eastern European loesses. Quaternary Science Reviews 27: 10581075.CrossRefGoogle Scholar
Buggle, B., Hambach, U., Glaser, B., Gerasimenko, N., Marković, S.B., Glaser, I. & Zöller, L., 2009. Stratigraphy, and spatial and temporal paleoclimatic trends in Southeastern/Eastern European loess-paleosol sequences. Quaternary International 196: 86106.CrossRefGoogle Scholar
Chepil, W.S. & Woodruff, N.P., 1957. Sedimentary characteristics of dust storms – visibility and dust concentration. American Journal of Science 255: 104114.CrossRefGoogle Scholar
Dobosi, V., 1967. Új felső-paleolit telep az Alföldön. (New Upper Paleolithic settlement on the Great Hungarian Plain). Archeológiai Értesíto 94: 184193.Google Scholar
EPICA community members, 2004. Eight glacial cycles from an Antarctic ice core. Nature 429: 623628.CrossRefGoogle Scholar
Frechen, M., Horvath, E. & Gabris, G., 1997. Geochronology of middle and upper Pleistocene loess sections in Hungary. Quaternary Research 48: 291312.CrossRefGoogle Scholar
Gábori-Csánk, V., 1960. A ságvári telep abszolút kormeghatározása. (Absolute age determination of the settlement at Ságvár). Archeológiai Értesítő 87: 125129.Google Scholar
Gábris, Gy., 2007. The relation between the time scale of the Quaternary surface processes and oxygen isotope stratigraphy according to the loess-palaeosoil sequences and river terraces in Hungary. Földtani Közlöny 137: 515540.Google Scholar
Galović, L., Frechen, M., Halamić, J., Durn, G. & Romić, M., 2009. Loess chronostratigraphy in Eastern Croatia – A luminescence dating approach. Quaternary International 198: 8597.CrossRefGoogle Scholar
Ganor, E. & Foner, H.A., 2001. Mineral dust concentrations, deposition fluxes and deposition velocities in dust episodes over Israel. Journal of Geophysical Research. Atmospheres 106 (D16): 1843118438.CrossRefGoogle Scholar
Geyh, M.A., Schweitzer, F., Vértes, L. & Vogel, I.C., 1969. A magyarorszagi würmi eljegesedés új kronológiai adatai. (New chronological data of the Weichselian glaciation in Hungary). Földrajzi Közlemények 18: 518.Google Scholar
Gillies, J.A., Nickling, W.G. & McTainsh, G.H., 1996. Dust concentration and particle-size characteristics of an intense dust haze event: Inland Delta Region, Mali, West Africa. Atmospheric Environment 30: 10811090.CrossRefGoogle Scholar
Harrison, S.P., Kohfeld, K.E., Roelandt, C. & Claquin, T., 2001. The role of dust in climate changes today, at the last glacial maximum and in the future. Earth-Science Reviews 54: 4380.CrossRefGoogle Scholar
Hupuczi, J., Lócskai, T., Hum, L. & Sümegi, P., 2006. Heinrich események kimutatása hazai löszszelvény alapján. (The demonstration of Heinrich events in Hungarian loess profiles). Malakológiai Tájékoztató 24: 3134.Google Scholar
Hupuczi, J. & Sümegi, P., 2010. The Late Pleistocene paleoenvironment and paleoclimate of the Madaras section (south Hungary), based on preliminary records from mollusks. Central European Journal of Geosciences 2: 6470.Google Scholar
Jaenicke, R. & Schütz, L., 1978. Comprehensive study of physical and chemical properties of the surface aerosols in the Cape Verde Islands regions. Journal of Geophysical Research. Oceans and atmospheres 83: 35853599.CrossRefGoogle Scholar
Jickells, T.D., An, Z., Andersen, K.K., Baker, A.R., Bergametti, G., Brooks, N., Junji, Cao, Boyd, P.W., Duce, R.A., Hunter, K.A., Kawahata, H., Kubilay, N., laRoche, J., Liss, P.S., Mahowald, N., Prospero, J.M., Ridgwell, A.J., Tegen, I. & Torres, R., 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308: 6771.CrossRefGoogle ScholarPubMed
Kohfeld, K.E. & Tegen, I., 2007. Record of mineral aerosols and their role in the earth system. Treatise on Geochemistry 4: 126.Google Scholar
Konert, M. & Vandenberghe, J., 1997. Comparison of laser grain-size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44: 523535.CrossRefGoogle Scholar
Koloszár, L. & Marsi, I., 2005. Formations of Late Neogene and Pleistocene terrestrial sediments in the region of Mórágy Hill (Hungary). Acta Geologica Hungarica 48: 317337.CrossRefGoogle Scholar
Kovács, J., 2008. Grain-size analysis of the Neogene red clay formation in the Pannonian Basin. International Journal of Earth Sciences 97: 171178.CrossRefGoogle Scholar
Kovács, J., Varga, Gy. & Dezső, J., 2008. Comparative study on the Late Cenozoic red clay deposits from China and Central Europe (Hungary). Geological Quarterly 52: 369382.Google Scholar
Krolopp, E. & Sümegi, P., 2002. A ságvári lösz-rétegsor csigafaunája. (The mollusc fauna of the Ságvár loess profile). Malakológiai Tájékoztató 20: 714.Google Scholar
Krolopp, E., Sümegi, P., Kuti, L., Hertelendi, E. & Kordos, L., 1996. Szeged környéki löszképzodmények keletkezésének paleoökológiai rekonstrukciója. (Palaeoecological reconstruction of the formation of loess deposits in the environs of Szeged). Földtani Közlöny 125: 309361.Google Scholar
Lisiecki, L. & Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic 18O records. Paleoceanography 20: PA1003, 17 p.Google Scholar
Lócskai, T., Hupuczi, J., Hum, L. & Sümegi, P., 2006. Dansgaard-Oeschger ciklusok kimutatása hazai löszszelvénybol. (The demonstration of Dansgaard-Oeshger cycles from Hungarian loess profiles). Malakológiai Tájékoztató 24: 3539.Google Scholar
Lun, I.Y.F & Lam, J.C., 2000. A study of Weibull parameters using long-term wind observations. Renewable Energy 20: 145153.CrossRefGoogle Scholar
Mahowald, N. M., Muhs, D.R., Levis, S., Rasch, P.J., Yoshioka, M., Zender, C.S. & Luo, C., 2006. Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates. Journal of Geophysical Research 111, D10202, 22 p.Google Scholar
Markovic, S.B., Kostic, N. & Oches, E.A., 2004. Paleosols in the Ruma loess section. Revista Mexicana de Ciencias Geológicas 21: 7987.Google Scholar
Markovic, S.B., McCoy, W.D., Oches, E.A., Savic, S., Gaudenyi, T., Jovanovic, M., Stevens, T., Walther, R., Ivanisevic, P. & Galic, Z., 2005. Paleoclimate record in the upper Pleistocene loess-palaeosol sequence at Petrovaradin brickyard (Vojvodina, Serbia). Geologica Carpathica 56: 545552.Google Scholar
Markovic, S.B., Oches, E.A., Sümegi, P., Jovanovic, M. & Gaudenyi, T., 2006. An introduction to the middle and upper Pleistocene loess-palaeosol sequence at Ruma brickyard, Vojvodina, Serbia. Quaternary International 149: 8086.CrossRefGoogle Scholar
Markovic, S.B., Oches, E.A., McCoy, W.D., Frechen, M. & Gaudenyi, T., 2007. Malacological and sedimentological evidence for ‘warm’ glacial climate from the Irig loess sequence, Vojvodina, Serbia. Geochemistry Geophysics Geosystems 8: Q09008. 12 p.CrossRefGoogle Scholar
Markovic, S.B., Bokhorst, M.P., Vandenberghe, J., McCoy, W.D., Oches, E.A., Hambach, U., Gaudenyi, T., Jovanovic, M., Stevens, T., Zöller, L. & Machalett, B., 2008. Late Pleistocene loess-palaeosol sequences in the Vojvodina region, North Serbia. Journal of Quaternary Science 23: 7384.CrossRefGoogle Scholar
Markovic, S.B., Hambach, U., Catto, N., Jovanovic, M., Buggle, B., Machalett, B., Zöller, L., Glaser, B. & Frechen, M., 2009. The middle and late Pleistocene loess-palaeosol sequences at Batajanica, Vojvodina, Serbia. Quaternary International 198: 255266.CrossRefGoogle Scholar
Marsi, I., Don, Gy., Földvári, M., Koloszár, L., Kovács-Pálffy, P., Krolopp, E., Lantos, M., Nagy-Bodor, E. & Zilahi-Sebess, L., 2004. Quaternary sediments of the northeastern Mórágy Block. Annual Report of the Geological Institute of Hungary for the Year 2003: 343359.Google Scholar
McTainsh, G.H. & Pitblado, J.R., 1987. Dust storms and related phenomena measured from meteorological records in Australia. Earth Surface Processes and Landforms 12: 415424.CrossRefGoogle Scholar
McTainsh, G.H., Nickling, W.G. & Lynch, A.W., 1997. Dust deposition and particle size in Mali, West Africa. Catena 29: 307322.CrossRefGoogle Scholar
McTainsh, G.H., Strong, C. & Leys, J., 2009. Wind erosion histories, model input data and community DustWatch. Atmospheric Environment Research Centre, Griffith University, Brisbane, 221 p.Google Scholar
Novothny, Á., Horváth, E. & Frechen, M., 2002. The loess profile at Albertirsa, Hungary – improvements in loess stratigraphy by luminescence dating. Quaternary International 95/96: 155163.CrossRefGoogle Scholar
Novothny, Á., Frechen, M., Horváth, E., Bradák, B., Oches, E.A., McCoy, W.D. & Stevens, T., 2009. Luminescence and amino acid racemisation chronology of the loess-paleosol sequence at Sütto, Hungary. Quaternary International 198: 6276.CrossRefGoogle Scholar
Oches, E.A. & McCoy, W.D., 1995. Aminostratigraphic evaluation of conflicting age estimates for the ‘Young Loess’ of Hungary. Quaternary Research 44: 160170.CrossRefGoogle Scholar
Patterson, E.M. & Gillette, D.A., 1977. Measurements of visibility vs. mass concentration for airborne soil particles. Atmospheric Environments 10: 8396.Google Scholar
Peticzka, R., Holawe, F. & Riegler, D., 2010. Structural analyses on the modified paleosol-sequence of ‘Stillfried B’ with high resolution measurements of selected laboratory parameters. Quaternary International 222: 168177.CrossRefGoogle Scholar
Pécsi, M., 1968. Loess. In: Fairbridge, R.W. (ed.): The Encyclopaedia of Geomorphology, Reinhold, New York: 674678.CrossRefGoogle Scholar
Pécsi, M., 1979. Lithostratigraphical subdivision of the loess profiles at Paks. Acta Geologica Hungarica 22: 409418.Google Scholar
Pécsi, M., 1985. Chronostratigraphy of Hungarian loesses and underlying subaerial formation. In: Pécsi, M. (ed.): Loess and the Quaternary: Chinese and Hungarian Case Studies. Studies in Geography in Hungary 18: 3349.Google Scholar
Pécsi, M., 1990. Loess is not just the accumulation of dust. Quaternary International 7–8: 121.CrossRefGoogle Scholar
Pécsi, M. & Pevzner, M.A., 1974. Paleomagnetic measurements in the loess sequences at Paks and Dunaföldvár, Hungary. Földrajzi Közlemények 22: 215224.Google Scholar
Pécsi, M. & Schweitzer, F., 1995. The lithostratigraphical, chronostratigraphical sequence of Hungarian loess profiles and their geomorphological position. In: Pécsi, M. & Schweitzer, F. (eds): Loess InForm 3. Concept of loess, loesspaleosol stratigraphy. MTA FKI, Budapest: 3161.Google Scholar
Pósfai, M. & Buseck, P.R., 2010. Nature and climate effects of individual tropospheric aerosol particles. Annual Review of Earth and Planetary Sciences 38: 1743.CrossRefGoogle Scholar
Prins, M.A. & Vriend, M., 2007. Glacial and interglacial eolian dust dispersal patterns across the Chinese Loess Plateau inferred from decomposed loess grain-size records. Geochemistry, Geophysics, Geosystems 8: Q07Q05, 17 p.CrossRefGoogle Scholar
Prins, M.A., Vriend, M., Nugteren, G., Vandenberghe, J., Lu, H., Zheng, H. & Weltje, G.J., 2007. Late Quaternary aeolian dust flux variability on the Chinese Loess Plateau: Inferences from unmixing of loess grain-size records. Quaternary Science Reviews 26: 230242.CrossRefGoogle Scholar
Pye, K., 1987. Aeolian Dust and Dust Deposits. Academic Press, London: 334 p.Google Scholar
Pye, K., 1995. The nature, origin and accumulation of loess. Quaternary Science Reviews 14: 653667.CrossRefGoogle Scholar
Querol, X., Alastuey, A., Rodríguez, S., Viana, M.M., Artíñano, B., Salvador, P., Mantilla, E., García do Santos, S., Fernandez Patier, R., de La Rosa, J., Sanchez de la Campa, A., Menéndez, M. & Gil, J.J., 2004. Levels of particulate matter in rural, urban and industrial sites in Spain. Science of the Total Environment 334-335: 359376.CrossRefGoogle Scholar
Ridgwell, A.J., 2002. Dust in the Earth system: the biogeochemical linking of land, air and sea. Philosophical Transactions of the Royal Society A. 360: 29052924.CrossRefGoogle ScholarPubMed
Rosenfeld, D., Rudich, Y. & Lahav, R., 2001. Desert dust suppressing precipitation: A possible desertification feedback loop. The Proceedings of the National Academy of Sciences of the United States of America 98: 59755980.Google ScholarPubMed
Sassen, K., DeMott, P.J., Prospero, J.M. & Poellot, M.R., 2003. Saharan dust storms and indirect aerosol effects on clouds: CRYSTALFACE results. Geophysical Research Letters 30: 1633, 4 p.CrossRefGoogle Scholar
Schmidt, E.D., Machalett, B., Marković, S.B., Tsukamoto, S. & Frechen, M., 2009. Luminescence chronology of the upper part of the Stari Slankamen loess sequence (Vojvodina, Serbia). Quaternary Geochronology: 16.Google Scholar
Seppäla, M., 1971. Stratigraphy and material of the loess layers at Mende, Hungary. Bulletin of the Geological Society of Finland 43: 109123.CrossRefGoogle Scholar
Shao, Y., 2008. Physics and Modelling of Wind Erosion. (2nd Revised and Expanded Edition) Springer, 452 pp.Google Scholar
Shao, Y., Yang, Y., Wang, J.J., Song, Z. X., Leslie, L.M., Dong, C.H., Zhang, Z.H., Lin, Z.H., Kanai, Y., Yabuki, S. & Chun, Y.S., 2003. Real-time numerical prediction of northeast Asian dust storms using an integrated modeling system. Journal of Geophysical Research 108: 4691, 18 p.CrossRefGoogle Scholar
Sun, D., Bloemendal, J., Rea, D.K., Vandenberghe, J., Jiang, F., An, Z. & Su, R., 2002. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sedimentary Geology 152: 263277.CrossRefGoogle Scholar
Sun, D., Bloemendal, J., Rea, D.K., An, Z., Vandenberghe, J., Lu, H., Su, R. & Liu, T.S., 2004. Bimodal grain-size distribution of Chinese loess, and its paleoclimatic implications. Catena 55: 325340.CrossRefGoogle Scholar
Sümegi, P., 2005. Loess and Upper Paleolithic Environment in Hungary. Aurea Kiadó, Nagykovácsi: 312 pp.Google Scholar
Sümegi, P. & Hertelendi, E., 1998. Reconstruction of microenvironmental changes in Kopasz Hill loess area at Tokaj (Hungary) between 15,000-70,000 BP years. Radiocarbon 40: 855863.CrossRefGoogle Scholar
Sümegi, P., Molnár, M., Svingor, É., Szántó, Zs, Hum, L. & Gulyás, S., 2007. Results of radiocarbon analysis of Upper Weichselian loess sequences from Hungary. Radiocarbon 49: 10231030.CrossRefGoogle Scholar
Stevens, T., Marković, S.B., Zech, M., Hambach, U. & Sümegi, P., 2011. Dust deposition and climate in the Carpathian Basin over an independently dated last glacial-interglacial cycle. Quaternary Science Reviews 30: 662681.CrossRefGoogle Scholar
Stuut, J-B., Smalley, I. & O'Hara-Dhand, K., 2009. Aeolian dust in Europe: African sources and European deposits. Quaternary International 198: 234245.CrossRefGoogle Scholar
Tegen, I., Lacis, A. A. & Fung, I., 1996. The influence of mineral aerosols from disturbed soils on climate forcing. Nature 380: 419422.CrossRefGoogle Scholar
Tews, E.K., 1996. Wind erosion rates from meteorological records in eastern Australia 1960–1992. B.Sc. thesis, Griffith UniversityGoogle Scholar
Újvári, G., Varga, A. & Balogh-Brunstad, Z., 2008. Origin, weathering, and geochemical composition of loess in southwestern Hungary. Quaternary Research 69: 421437.CrossRefGoogle Scholar
Újvári, G., Kovács, J., Varga, Gy., Raucsik, B. & Marković, S.B., 2010. Dust flux estimates for the Last Glacial Period in East Central Europe based on terrestrial records of loess deposits: a review. Quaternary Science Reviews 29: 31573166.CrossRefGoogle Scholar
Varga, Gy., 2011. Similarities among the Plio-Pleistocene terrestrial aeolian dust deposits in the world and in Hungary. Quaternary International 234: 98108.CrossRefGoogle Scholar
Vogel, I.C. & Waterbolk, H.T., 1964. Groningen radiocarbon dates. V. Radiocarbon 6: 349369.CrossRefGoogle Scholar
Vriend, M. & Prins, M.A., 2005. Calibration of modelled mixing patterns in loess grain-size distributions: an example from the north-eastern margin of the Tibetan Plateau, China. Sedimentology 52: 13611374.CrossRefGoogle Scholar
Weltje, G.J., 1997. End-member modeling of compositional data: numericalstatistical algorithms for solving the explicit mixing problem. Journal of Mathematical Geology 29: 503549.CrossRefGoogle Scholar
Weltje, G.J. & Prins, M.A., 2003. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics. Sedimentary Geology 162: 3962.CrossRefGoogle Scholar
Weltje, G.J. & Prins, M.A., 2007. Genetically meaningful decomposition of grainsize distributions. Sedimentary Geology 202: 409424.CrossRefGoogle Scholar
Willis, K.J., Rudner, Z.E. & Sümegi, P., 2000. Full-glacial forests of central and southeastern Europe. Quaternary Research 53: 203213.CrossRefGoogle Scholar
Wintle, A.G. & Packman, S.C., 1988. Thermoluminescence ages for three sections in Hungary. Quaternary Science Reviews 7: 315320.CrossRefGoogle Scholar
Zender, C.S., Bian, H.S. & Newman, D., 2003. Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology. Journal of Geophysical Research – Atmospheres 108: 4416, 19 p.CrossRefGoogle Scholar
Zöller, L., Oches, E.A. & McCoy, W.D., 1994. Towards a revised chronostratigraphy of loess in Austria with respect to key sections in the Czech Republic and in Hungary. Quaternary Geochronology / Quaternary Science Reviews 13: 465472.CrossRefGoogle Scholar
Zöller, L. & Wagner, G.A., 1990. Thermoluminescence dating of loess – recent developments. Quaternary International 7/8: 119128.CrossRefGoogle Scholar