Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T10:46:09.801Z Has data issue: false hasContentIssue false

Geophysical investigation across the Peel boundary fault (The Netherlands) for a paleoseismological study

Published online by Cambridge University Press:  01 April 2016

D. Demanet
Affiliation:
LGIH Université de Liège, Bat B19, B-4000 Liège, Belgium; e-mail: h.teerlynck@ulg.ac.be
L.G. Evers
Affiliation:
Royal Netherlands Meteorological Institute (KNMI), PO Box 201, 3730 AE De Bilt, The Netherlands; e-mail: evers@knmi.nl
H. Teerlynck
Affiliation:
LGIH Université de Liège, Bat B19, B-4000 Liège, Belgium; e-mail: h.teerlynck@ulg.ac.be
D. Jongmans
Affiliation:
LGIH Université de Liège, Bat B19, B-4000 Liège, Belgium; e-mail: h.teerlynck@ulg.ac.be LIRIGM Université Joseph Fourier-Grenoble 1, BP 53-F 38041 Grenoble Cedex 9, France; e-mail: denis.jongmans@ujf-grenoble.fr

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In preparation of the first paleoseismic trenching in the NE border of the Roer graben (the Netherlands), site selection was carried out. Combining geological and seismological information and using existing aerial photographs, seismic reflection and geodetic levelling data, it was decided to focus on the Peel boundary fault near the village of Neer. Detailed information on the exact location of the fault was obtained through geophysical techniques, mainly ground penetrating radar (GPR) and resistivity measurements. GPR data unambiguously showed the flexuring and offset of reflectors affected by the fault. Performing eleven GPR profiles along strike allowed to obtain a 3D picture of the fault, laterally extending the information given in the trench.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2001

References

Bilham, R.L., 1985. Subsurface radar imagery of near-surface fractures associated with the Borah Peak earthquake, Idaho. Proceedings of the workshop XXVIII on the Borah Peak, Idaho earthquake: 182194.Google Scholar
Cai, J., Mcmechan, A. & Fisher, M.A., 1996. Application of ground penetrating radar to investigation of near-surface fault properties in the San Francisco bay region. Bulletin of the Seismological Society of America 86: 14591470,CrossRefGoogle Scholar
Dahlin, T., 1996. 2D Resistivity surveying for environmental and engineering applications. First Break 14: 275283.CrossRefGoogle Scholar
Demanet, D., Renardy, F., Vanneste, K., Jongmans, D., Camelbeeck, T. & Meghraoui, M., 2001. The use of geophysical prospecting for imaging active faults in the Roer graben, Belgium. Geophysics 66: 7889.Google Scholar
Geluk, M.C, Duin, E.J.Th., Dusar, M., Rijkers, R.H.B., Van den Berg, M.W. & Van Rooijen, P., 1994. Stratigraphy and tectonics of the Roer Valley Graben. Geologie en Mijnbouw 73: 129141.Google Scholar
Jongmans, D., 2000. Development and application of geophysical prospecting for fault detection and characterization purposes. Final Report PALEOSIS Project (ENV4-CT97–0578).Google Scholar
Loke, M.H., & Barker, R.D., 1996. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophysical Prospecting 44: 131152.CrossRefGoogle Scholar
Palmer, J.R., Shoemaker, M., Hoffman, D., Anderson, N.L., Vaughn, J.D. & Harrison, R.W., 1997. Seismic evidence of quaternary faulting in the Benton hills area, southeast Missouri. Seismological Research Letters 68: 650661.CrossRefGoogle Scholar
Reynolds, J.M., 1997, An introduction to applied and environmental geophysics: Wiley, Chicester, 796 p.Google Scholar
Telford, W.M., Geldart, L.P. & Sheriff, R.E., 1990. Applied Geophysics : Cambridge University Press, 770 p.Google Scholar
Van Ardsale, R., Purser, J., Stephenson, W. & Odum, J., 1998. Faulting along the southern margin of Reeflot lake, Tennessee: Bulletin of Seismological Society of America 88: 131139.CrossRefGoogle Scholar
Van den Berg, M.W., 1996, Fluvial sequences of the Maas; a 10 Ma record of neotectonics and climate change at various time-scales. Thesis University Wageningne, the Netherlands.Google Scholar
Van den Berg, M.W., Groenewoud, W., Lorenz, G.K, Lubbers, P.J., Brus, D.J. & Kroonenberg, S.B., 1994. Patterns and velocities of recent crustal movements in the Dutch part of the Roer Valley rift system. Geologie en Mijnbouw 73: 157168.Google Scholar
van den Berg, M.W. & Lokhorst, A., 2000. Final Report PALEOSIS Project (ENV4-CT97–0578).Google Scholar
Van den Berg, M.W., Vaneste, K., Dost, B., Miedema, R., van Mourik, J., Lokhorst, A., Van Eijk, M. & Verbeek, K.. Paleoseismic investigations along the Peel boundary fault: geological setting, site selection and trenching results. In preparation for Geologie en Mijnbouw.Google Scholar
Williams, R. A., Luzietti, E.A. & Carver, D.L., 1995, High-resolution imaging of Quaternary faulting on the Crittenden County fault zone. New Madrid seismic zone, northeastern Arkansas: Seismological Research Letters 66: 4257.Google Scholar
Zagwijn, W.H., 1989. The Netherlands during the Tertiary and Quaternary: a case history of Coastal Lowlands evolution. Geologie en Mijnbouw 68: 107121.Google Scholar