Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T21:57:37.295Z Has data issue: false hasContentIssue false

Dendrogeomorphology – a new tool to study drift-sand dynamics

Published online by Cambridge University Press:  01 April 2016

J. den Ouden*
Affiliation:
Wageningen University, Centre for Ecosystem Studies, Forest Ecology and Forest Management Group, P.O. Box 47, 6700 AA Wageningen, the Netherlands
U.G.W. Sass-Klaassen
Affiliation:
Wageningen University, Centre for Ecosystem Studies, Forest Ecology and Forest Management Group, P.O. Box 47, 6700 AA Wageningen, the Netherlands
P. Copini
Affiliation:
Wageningen University, Centre for Ecosystem Studies, Forest Ecology and Forest Management Group, P.O. Box 47, 6700 AA Wageningen, the Netherlands
*
* Corresponding author. Email: jan.denouden@wur.nl

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A dendrogeomorphological approach is presented, using wood characteristics of native oak (Quercus robur L.) to infer dynamics of aeolian sediment transport in drift-sand areas. Wood samples, taken from oaks in two drift-sand areas, were analysed to study changes in tree-ring pattern and wood anatomy as a consequence of burying or exposure from drift sand.

In all cases, the wood of the sampled oaks showed sudden changes in anatomy and tree-ring width due to burial by drift sand or subsequent exposure after erosion of the new soil surface. After aerial stems became covered by drift sand, the wood lost its characteristic ring-porous features, and tree rings became strongly reduced in width with less distinct ring boundaries. Buried stems that became exposed after erosion showed an abrupt increase in ring width and turned distinctly ring porous again. Roots that were exposed also adopted clear ring-porous features, increased in ring width and anatomically resembled aerial stem wood.

Using tree-ring analysis, it is possible to precisely date sand deposition and erosion events by detecting the concurrent changes in anatomy of woody structures. This study indicates the high potential of dendrogeomorphology as a tool to study drift-sand dynamics with a high temporal, i.e. annual, resolution for a period going back as long as the maximum age of the trees present (in this study at least 250 years). Since the signals of past deposition and erosion events are conserved in the wood, this is the only method that can be used to reconstruct drift-sand dynamics when the actual landforms are no longer present.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2007

References

Alestalo, J., 1971. Dendrochronological interpretation of geomorphic processes. Fennia 105: 1140.Google Scholar
Bakker, T., Everts, H., Jungerius, P., Ketner, R., Kooijman, A. Van Turnhout, C. & Esselink, H., 2003. Preadvies stuifzanden. Expertisecentrum LNV (Ede/Wageningen): 114 pp.Google Scholar
Bal, D.P.F., Beije, H.M., Fellinger, M., Haveman, R., Van Opstal, A.J.F.M. & Van Zadelhoff, F.J., 2001. Handboek natuurdoeltypen. Expertisecentrum LNV (Wageningen): 832 pp.Google Scholar
Ballarini, M., Wallinga, J., Murray, A.S., Van Heteren, S., Oost, A.P., Bos, A.J. & Van Eijk, C.W.E., 2003. Optical dating of young coastal dunes on a decadal time scale. Quaternary Science Reviews 22, 10111017.Google Scholar
Boer, R.W., 1857. Bijdragen tot de kennis der houtteelt. Tjeenk Willink (Zwolle): 577 pp.Google Scholar
Buis, J., 1985. Historia forestis. HES & De Graaf Publishers (Utrecht): 1058 pp.Google Scholar
Bodoque, J.M., Diez-Herrero, A., Martín-Duque, J.F., Rubiales, J.M., Godfrey, A., Pedraza, J., Carrasco, R.M. & Sanz, M.A., 2005. Sheet erosion rates determined by using dendrogeomorphological analysis of exposed tree roots: Two examples from Central Spain. Catena 64: 81102.Google Scholar
Copini, P., Buiteveld, J., Den Ouden, J. & Sass-Klaassen, U.G.W., 2005. Clusters of Quercus robur and Q. petraea at the Veluwe (the Netherlands). CGN Report 1 (Wageningen): 46 pp.Google Scholar
Cournoyer, L.C. & Filion, L., 1994. Variation in the anatomy of white spruce in response to dune activity. Arctic and Alpine Research 26: 412417.CrossRefGoogle Scholar
Fanta, J., 1982. Natuurlijke verjonging van het bos op droge zandgronden. Rapport nr. 301, Rijksinstituut voor het onderzoek in de bos- en landschaps- bouw ‘De Dorschkamp’ (Wageningen): 236 pp.Google Scholar
Fayle, D.C.F., 1968. Radial growth in tree roots: distribution, timing, anatomy. Technical Report No. 9, Faculty of Forestry, University of Toronto (Toronto): 183 pp.Google Scholar
Filion, L. & Marin, P., 1988. Modifications morphologiques de l’Épinette blanche soumise á la sedimentation éolienne en milieu dunaire, Québec subartique. Canadian Journal of Botany 66: 18621869.Google Scholar
Gärtner, H., 2003. Holzanatomische Analyse diagnostischer Merkmale einer Freilegungsreaktion in Jahrringen von Koniferenwurzeln zur Rekonstruktion geomorphologischer Prozesse. Dissertationes Botanicae, Band 378: 118 pp.Google Scholar
Gärtner, H., 2007. Tree roots – Methodological review and new development in dating and quantifying erosive processes. Geomorphology 86: 243251.Google Scholar
Gärtner, H., Schweingruber, F.H. & Dikau, R., 2001. Determination of erosion rates by analyzing structural changes in the growth pattern of exposed roots. Dendrochronologia 19: 8191.Google Scholar
Grissino-Mayer, H.D., 2001. Evaluating crossdating accuracy: A manual and tutorial for the computer program C0FECHA. Tree-Ring Research 57: 205221.Google Scholar
Heikkinen, O. & Tikkanen, M., 1987. The kalajoki dune field on the west coast of Finland. Fennia 165: 241267.Google Scholar
Hitz, O., Gärtner, H. & Monbaron, M., 2006. Reconstruction of erosion rates in Swiss mountain torrents. In: Heinrich, I., Gärtner, H., Monbaron, M. & Schleser, G. (eds): TRACE – Tree Rings in Archaeology, Climatology and Ecology 4, 196202.Google Scholar
Holmes, R.L., 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43: 6978.Google Scholar
Koster, E.A., 1978. De stuifzanden van de Veluwe, een fysisch-geografische studie. Universiteit van Amsterdam (Amsterdam): 226 pp.Google Scholar
Koster, E.A., 2005. The physical geography of Western Europe. Oxford University Press (Oxford): 438 pp.Google Scholar
Marin, P. & Filion, L., 1992. Recent dynamics of subarctic dunes as determined by tree-ring analysis of white spruce, Hudson Bay, Quebec. Quaternary Research 38: 316330.Google Scholar
Maun, M.A., 1998. Adaptations of plants to burial in coastal sand dunes. Canadian Journal of Botany 76: 713738.CrossRefGoogle Scholar
Riksen, M., Ketner-Oostra, R., Van Turnhout, C., Nijssen, M., Goossens, D., Jungerius, P.D. & Spaan, W., 2006. Will we lose the last active inland drift sands of Western Europe? The origin and development of the inland drift-sand ecotype in the Netherlands. Landscape Ecology 21: 431447.Google Scholar
Rinn, F., 1996. TSAP (Time Series Analysis and Presentation) Version 3.0, Reference manual (Heidelberg): 262 pp.Google Scholar
Sahling, L, Schmidt, K.-H. & Gärtner, H., 2003. Dendrogeomorphological analysis of the enlargement of cracks at the Wellenkalk-scarp in the southern Thuringia Basin. In: Schleser, G., Winiger, M., Bräuning, A., Gartner, H., Helle, G., Jansma, E., Neuwirth, B. & Treydte, K. (eds): TRACE-Tree Rings in Archaeology, Climatology and Ecology 1: 125130.Google Scholar
Schweingruber, F.H., 2001. Dendroökologische Holzanatomie. Paul Haupt (Bern): 472 pp.Google Scholar
Stoutjesdijk, P., 1959. Heaths and inland dunes of the Veluwe. A study of some of the relations existing between soil, vegetation and microclimate. Wentia 2: 196.Google Scholar
Strunk, H., 1997. Dating of geomorphological processes using dendrogeomorphological methods. Catena 31: 137151.Google Scholar
Tesch, P., Hesselink, E. & Valckenier Suringar, J., 1926. De zandverstuivingen bij Kootwijk in woord en beeld. Tekst bij den platenatlas. Staatsboschbeheer (Utrecht): 70 pp.Google Scholar
Wieler, A., 1891. Über die Beziehung zwischen Wurzel- und Stammholz. Tharandter Forstliches Jahrbuch 41: 143171.Google Scholar
Wallinga, J., Davids, F. & Dijkmans, J.W.A., 2007. Luminescence dating of Netherlands’ sediments. Netherlands Journal of Geosciences 86/3: 179196.Google Scholar