Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T14:58:10.289Z Has data issue: false hasContentIssue false

Climatic and environmental events over the Last Termination, as recorded in The Netherlands: a review

Published online by Cambridge University Press:  01 April 2016

W.Z. Hoek
Affiliation:
Department of Physical Geography, Faculty of Geographical Sciences, Universiteit Utrecht, Heidelberglaan 2, NL-3508 TC Utrecht, The Netherlands; e-mail:W.Hoek@geog.uu.nl
S.J.P. Bohncke
Affiliation:
Department of Quaternary Geology and Geomorphology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Last Termination, or Weichselian Lateglacial (ca 15–10 ka cal. BP), is a time period with rapid changes in climate and environment. The oxygen-isotope records of the Greenland ice-cores are regarded as the most complete climate proxy for the North Atlantic region. In The Netherlands several other proxies have been investigated and dated in great detail over the last few decades. However, changes registered in the different records are not by definition causally related to climate changes. Comparison of the different records on a common time-scale permits evaluation of the interrelationships and correlations to the Greenland ice-cores. Some events are the result of the complex interplay of different environmental variables and have no causal relationship with climate changes at all. By comparing the different records on a common time-scale and examining spatial patterns, the links between the proxies become evident.

Type
Special section: PAGES Symposium, Amsterdam, 3 November 2000
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2002

References

Atkinson, T.C., Briffa, K.R. & Coope, G.R., 1987. Seasonal temperatures in Britain during the past 22,000 years, reconstructed using beetle remains. Nature 325: 587–593.CrossRefGoogle Scholar
Bateman, M.D. & Van Huissteden, J., 1999. The timing of lastglacial periglacial and aeolian events, Twente, eastern Netherlands. Journal of Quaternary Science 14: 277–283.3.0.CO;2-W>CrossRefGoogle Scholar
Berendsen, H., Hoek, W. & Schorn, E., 1995. Late Weichselian and Holocene river channel changes of the rivers Rhine and Meuse in the Netherlands (Land van Maas en Waal). Paläoklimaforschung/Palaeoclimate Research 14: 151–171.Google Scholar
Björck, S., Kromer, B., Johnsen, S., Bennike, O., Hammarlund, D., Lemdahl, G., Possnert, G., Rasmussen, T.-L., Wohlfarth, B., Hammer, C.-U. & Spurk, M., 1996. Synchronized TerrestrialAtmospheric Deglacial Records Around the North Atlantic. Science 274: 1155–1160.CrossRefGoogle ScholarPubMed
Björk, S., Walker, M.J.C., Cwynar, L.C., Johnsen, S., Knudsen, K.-L., Lowe, J.J., Wohlfarth, B. & INTIMATE Members 1998. An event stratigraphy for the Last Termination in the North Atlantic region based on the Greenland ice-core record: a proposal by the INTIMATE group. Journal of Quaternary Science 13: 283–292.Google Scholar
Bohncke, S.J.P., 1993. Lateglacial environmental changes in The Netherlands: spatial and temporal patterns. Quaternary Science Reviews 12:707–718.Google Scholar
Bohncke, S.J.P. & Vandenberghe, J.R. 1991. Palaeohydrological development in the Southern Netherlands during the last 15,000 years. In: Starkel, L., Gregory, K.J. & Thornes, J.B. (eds.), Temperate Palaeohydrology. Wiley & Sons, Chichester, pp. 253–281.Google Scholar
Bohncke, S.J.P. Vandenberghe, J.R. Coope, G.R. & Reiling, R., 1987. Geomorphology and palaeoecology of the Mark valley (southern Netherlands) : palaeoecology, palaeohydrology and cli mate during the Weichselian Lateglacial. Boreas 16: 69–85.Google Scholar
Bohncke, S.J.P., Wijmstra, T.A., Van der Woude, J. & Sohl, H., 1988. The Late-Glacial infill of three lake successions in The Netherlands: Regional vegetational history in relation to NW European vegetational developments. Boreas 17: 385–402.Google Scholar
Bohncke, S.J.P. & Wijmstra, T.A., 1988. Reconstruction of Late-Glacial Lake-level fluctuations in The Netherlands based on palaeobotanical analyses, geochemical results and pollen-density data. Boreas 17:403–425.Google Scholar
Bohncke, S.J.P., Vandenberghe, J.F. & Huijzer, A.S., 1993. Periglacial palaeoenvironment during the Lateglacial in the Maas valley. Geologie en Mijnbouw 72: 193–210.Google Scholar
Bohncke, S.J.P. & Hoek, W.Z. (in press) Weichselian Lateglacial environmental and climate changes in the Netherlands. Encyclopedia of Quaternary Science, Chapman and Hall.Google Scholar
Cleveringa, P., De Gans, W. Kolstrup, E. & Paris, F.P., 1977. Vegetational and Climatic developments during the Late Glacial and the Early Holocene and Aeolian sedimantation as recorded in the Uteringsveen (Drente, The Netherlands). Geologie en Mijnbouw 56: 234–242.Google Scholar
Coope, G.R., Lemdahl, G., Lowe, J.J. & Walkling, A., 1998. Temperature gradients in northern Europe during the Last GlacialHolocene transition (14–9 14C kyr BP) interpreted from coleopteran assemblages. Journal of Quaternary Science 13: 419–433.Google Scholar
De Groot, T.A.M., Cleveringa, P. & Klijnstra, B., 1987. Frostmound scars and the evolution of a Late Dryas environment (northern Netherlands). Geologie en Mijnbouw 66: 239–250.Google Scholar
Dijkmans, J.W.A. & Tömqvist, T.E., 1991. Modern periglacial aeolian deposits and landforms in the Søndre Strømfjord area, West Greenland and their palaeoenvironmental implications. Meddelser om Grönland, Geoscience 25: 1–39.Google Scholar
Florschütz, F., 1939. Die paläobotanische Grenze PleistozänHolozän in den Niederlanden. Recueil des Travaux Botaniques Néerlandais 36: 550–558.Google Scholar
Grootes, P.M., Stuiver, M., White, J.W.C., Johnsen, S. & Jouzel, J., 1993. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366: 552–554.Google Scholar
Hoek, W.Z., 1997a. Palaeogeography of Lateglacial Vegetations -Aspects of Lateglacial and Early Holocene vegetation, abiotic landscape, and climate in The Netherlands. Netherlands Geographical Studies 230, Utrecht/Amsterdam, 160 pp.Google Scholar
Hoek, W.Z., 1997b. Atlas to Palaeogeography of Lateglacial Vegetations - Maps of Lateglacial and Early Holocene landscape and vegetation in The Netherlands, with an extensive review of available palynological data. Netherlands Geographical Studies 231, Utrecht/Amsterdam, 176 pp.Google Scholar
Hoek, W.Z., 1997c. Late-Glacial and early Holocene climatic events and chronology of vegetation development in the Netherlands. Vegetation History and Archaeobotany 6: 197–213.Google Scholar
Hoek, W.Z., 2000. Abiotic landscape and vegetation patterns in the Netherlands during the Weichselian Late Glacial. Geologie en Mijnbouw/Netherlands Journal of Geosciences 79: 497–509.Google Scholar
Hoek, W.Z., 2001. Vegetation response to the 14.7 and 11.5 ka yrs BP climate transitions: is vegetation lagging climate? Global and Planetary Change 30: 103–115.CrossRefGoogle Scholar
Hoek, W.Z., Bohncke, S.J.P., Ganssen, G.M. & Meijer, T., 1999. Lateglacial environmental changes recorded in calcareous gyttja deposits at Gulickshof, southern Netherlands. Boreas 28: 416–432.Google Scholar
Hoek, W.Z. & Bohncke, S.J.P., 2001. Oxygen-isotope wigglematching as a tool for synchronising ice-core and terrestrial records over Termination 1. Quaternary Science Reviews 20: 1251–1264.Google Scholar
Huisink, M., 1997. Sedimentological and morphological changes of a lowland river as a response to climatic change; the Maas, The Netherlands. Journal of Quaternary Science 12: 209–223.3.0.CO;2-P>CrossRefGoogle Scholar
Huisink, M., 1999. Changing river styles in response to climate change. Examples from the Maas and Vecht during the Weichselian Pleni- and Lateglacial. PhD-thesis Vrije Universiteit Amsterdam, 127 pp.Google Scholar
Huijzer, A.S. & Isarin, R.F.B., 1997. The reconstruction of past climates using multi-proxy evidence; an example of the Weichselian Pleniglacial in northwest and central Europe. Quaternary Science Reviews 16: 513–533.CrossRefGoogle Scholar
Isarin, R.F.B., 1997. Permafrost distribution and temperatures in Europe during the Younger Dryas. Permafrost and Periglacial Processes 8: 313–333.Google Scholar
Isarin, R.F.B., Renssen, H. & Vandenberghe, J., 1998. The impact of the North Atlantic Ocean on the Younger Dryas climate in north-western and central Europe. Journal of Quaternary Science 13:447–453.Google Scholar
Isarin, R.F.B. & Bohncke, S.J.P., 1999. Mean July temperatures during the Younger Dryas in northwestern an central Europe as inferred from climate indicator plant species. Quaternary Research 51: 158–173.Google Scholar
Iversen, J., 1947. Plantevaekst, Dyreliv og Klima i det senglaciale Danmark. Geologiske föreninger i Stockholm förhandlingar 69: 67–78.Google Scholar
Iversen, J., 1954. The Late-Glacial Flora of Denmark and its Relation to Climate and Soil. In: Studies in Vegetational History, Danmarks Geologiske Undersogelske 2(80): 88–119.Google Scholar
Iversen, J., 1973. The Development of Denmark’s Nature since the Last Glacial. Danmarks Geologiske Undersøgelse 5(7C): 1–126.Google Scholar
Johnsen, S.J., Clausen, H.B., Dansgaard, W. Fuhrer, K., Gundestrup, N., Hammer, C.U., Iversen, P., Jouzel, J., Stauffer, B. & Steffensen, J.-P., 1992. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359: 311–313.Google Scholar
Kasse, C. 1997. Cold-climate aeolian sand-sheet formation in North-Western Europe (c. 14–12.4 ka); a response to permafrost degradation and increased aridity. Permafrost and Periglacial Processes 8: 295–311.Google Scholar
Kasse, C. 1999. Late Pleniglacial and Late Glacial aeolian phases in The Netherlands. In: Schirmer, W. (ed.) Dunes and fossil soils. GeoArchaeoRhein 3: 61–82.Google Scholar
Kasse, K. & Bohncke, S., 1992. Weichselian Upper Pleniglacial aeolian and ice-cored morphology in the Southern Netherlands (Noord-Brabant, Groote Peel). Permafrost and Periglacial Processes 3: 327–342.Google Scholar
Kasse, K., Vandenberghe, J. & Bohncke, S., 1995. Climatic change and fluvial dynamics of the Maas during the Late Weichselian and Early Holocene. Paläoklimaforschung/Palaeoclimate Research 14: 123–150.Google Scholar
Kolstrup, E., 1980. Climate and stratigraphy in Northwestern Europe between 30,000 BP and 13,000 BP, with special reference to The Netherlands. Mededelingen Rijks Geologische Dienst 32: 181–253.Google Scholar
Lowe, J.J., Hoek, W.Z. & INTIMATE group, 2001. Inter-regional correlation of palaeoclimatic records for the Last Glacial-Interglacial Transition: a protocol for improved precision recommended by the INTIMATE project group. Quaternary Science Reviews 20: 1175–1187.Google Scholar
Mangerud, J., Andersen, S.T., Berglund, B.E. & Donner, J.J., 1974. Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3: 109–128.Google Scholar
Renssen, H. & Isarin, R.F.B., 2001. The two major warming phases of the last deglaciation at ∼14.7 and ∼ 11.5 kyr cal BP in Europe: climate reconstructions and AGCM experiments. Global and Planetary Change 30: 117–153.Google Scholar
Renssen, H., Isarin, R.F.B., Vandenberghe, J. & workshop participants, 2001. Research prospects for palaeoclimatic reconstructions of the last glacial-interglacial cycle with emphasis on abrupt warming. Global and Planetary Change 30: 155–165.Google Scholar
Stuiver, M., Grootes, P.M. & Braziunas, T.F., 1995. The GISP2 ‒18O Climate Record of the Past 16 500 Years and the Role of the Sun, Ocean, and Volcanoes. Quaternary Research 44: 341–354.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, W. Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., Van der Plicht, J. & Spurk, M. 1998. INTCAL98 radiocarbon age calibration 24,000-0 cal BP. Radiocarbon 40: 1041–1083.Google Scholar
Tebbens, L.A., Veldkamp, A., Westerhoff, W. & Kroonenberg, S.B., 1999. Fluvial incision and channel downcutting as a response to Late-glacial and Early Holocene climate change: the lower reach of the River Meuse (Maas), The Netherlands. Journal of Quaternary Science 14: 59–75.Google Scholar
Vandenberghe, J.F., 1992. Periglacial Phenomena and Pleistocene Environmental Conditions in the Netherlands - An Overview. Permafrost and Periglacial Processes 3: 363–374.Google Scholar
Vandenberghe, J.F., Bohncke, S.J.P., Lammers, W. & Zilverberg, L., 1987. Geomorphology and palaeoecology of the Mark valley (southern Netherlands): geomorphological valley development during the Weichselian and Holocene. Boreas 16: 55–67.Google Scholar
Van den Berg, M.W., 1996. Fluvial sequences of the Maas, a 10 Ma record of neotectonics and climate change at various time-scales. PhD-thesis, Wageningen, 181 pp.Google Scholar
Van der Hammen, Th., 1949. De Allerød-oscillatie in Nederland, pollenanalytisch onderzoek van een laatglaciale meerafzetting in Drente, I & II, Koninklijke Nederlandse Academie van Wetenschappen Proceedings 52: 69–75 and 169–176.Google Scholar
Van der Hammen, Th., 1951. Late-Glacial flora and periglacial phenomena in The Netherlands. PhD-thesis, Leiden, Leidse Geologische Mededelingen 17: 71–183.Google Scholar
Van der Hammen, Th. & Wijmstra, T.A. (eds.), 1971. The Upper Quaternary of the Dinkel valley, Mededelingen Rijks Geologische Dienst 22, 213 pp.Google Scholar
Van Geel, B., 1996. Factors influencing changing AP/NAP ratios in NW-Europe during the Late-Glacial period. II Quaternario 9: 599–604.Google Scholar
Van Geel, B. & Kolstrup, E., 1978. Tentative explanation of the Late Glacial and Early Holocene climatic changes in north-western Europe. Geologie en Mijnbouw 57: 87–89.Google Scholar
Van Geel, B., Bohncke, S.J.P. & Dee, H., 1981. A Palaeoecological study of an upper Lateglacial and Holocene sequence from ‘De Borchert’, The Netherlands. Review of Palaeobotany and Palynology 31: 367–448.Google Scholar
Van Geel, B., Coope, G.R. & Van der Hammen, Th., 1989. Palaeoecology and stratigraphy of the Lateglacial type section at Usselo (The Netherlands). Review of Palaeobotany and Palynology 39: 25–129.Google Scholar
Van Huissteden, J., 1990. Tundra rivers of the last glacial: sedimentation and geomorphological processes during the Middle Pleniglacial in Twente, Eastern Netherlands. Mededelingen Rijks Geologische Dienst 44: 1–138.Google Scholar
Wijmstra, T.A. & Schreve-Brinkman, E.J., 1971. The Lutterzand section. In: Van der Hammen, Th. & Wijmstra, T.A. (eds.), 1971. The Upper Quaternary of the Dinkel valley, Mededelingen Rijks Geologische Dienst 22: 87–100.Google Scholar
Zagwijn, W.H., 1994. Reconstruction of climate change during the Holocene in western and central Europe based on pollen records of indicator species. Vegetation History and Archaeobotany 3: 65–88.Google Scholar
Zagwijn, W.H., 1989. Vegetation and climate during warmer intervals in the Late Pleistocene of western and central Europe. Quaternary International 3-4: 57–67.Google Scholar