Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T18:19:36.386Z Has data issue: false hasContentIssue false

Natural language question answering: the view from here

Published online by Cambridge University Press:  14 February 2002

L. HIRSCHMAN
Affiliation:
The MITRE Corporation, Bedford, MA, USA
R. GAIZAUSKAS
Affiliation:
Department of Computer Science, University of Sheffield, Sheffield, UK e-mail: r.gaizayskas@dcs.shef.ac.uk

Abstract

As users struggle to navigate the wealth of on-line information now available, the need for automated question answering systems becomes more urgent. We need systems that allow a user to ask a question in everyday language and receive an answer quickly and succinctly, with sufficient context to validate the answer. Current search engines can return ranked lists of documents, but they do not deliver answers to the user.

Question answering systems address this problem. Recent successes have been reported in a series of question-answering evaluations that started in 1999 as part of the Text Retrieval Conference (TREC). The best systems are now able to answer more than two thirds of factual questions in this evaluation.

Type
Research Article
Copyright
© 2001 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)