Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T09:52:38.726Z Has data issue: false hasContentIssue false

Inferring textual entailment with a probabilistically sound calculus*

Published online by Cambridge University Press:  16 September 2009

STEFAN HARMELING*
Affiliation:
Max Planck Institute for Biological Cybernetics, Spemannstraße 38, 72076 Tuebingen, Germany e-mail: stefan.harmeling@tuebingen.mpg.de

Abstract

We introduce a system for textual entailment that is based on a probabilistic model of entailment. The model is defined using a calculus of transformations on dependency trees, which is characterized by the fact that derivations in that calculus preserve the truth only with a certain probability. The calculus is successfully evaluated on the datasets of the PASCAL Challenge on Recognizing Textual Entailment.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, R. 2006. Textual entailment through extended lexical overlap. In Bar-Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo, D., Magnini, B. and Szpektor, I. (eds.), Proceedings of the Second PASCAL Challenges Workshop on Recognising Textual Entailment, pp. 128–133.Google Scholar
Bar-Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo, D., Magnini, B., and Szpektor, I. (eds.) 2006. Proceedings of the Second PASCAL Challenges Workshop on Recognising Textual Entailment.Google Scholar
Bar-Haim, R., Dagan, I., Greental, I., and Shnarch, E. 2007a. Semantic Inference at the Lexical-Syntactic Level. In Proceedings of the Twenty-Second Conference on Artificial Intelligence (AAAI-07), pp. 871876. The AAAI Press, Menlo Park, California, USA.Google Scholar
Bar-Haim, R., Dagan, I., Greental, I., Szpektor, I., and Friedman, M. 2007b. Semantic inference at the lexical–syntactic level for textual entailment recognition. In Giampiccolo, D., Magnini, B., Dagan, I., Dolan, B. and Pantel, P. (eds.), Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pp. 131–136.Google Scholar
Bird, S. 2005. NLTK-Lite: efficient scripting for natural language processing. In Fourth International Conference on Natural Language Processing, pp. 1–8.Google Scholar
Dagan, I., Glickman, O., and Magnini, B. (eds.) 2005. Proceedings of the PASCAL Challenges Workshop on Recognising Textual Entailment.CrossRefGoogle Scholar
de Marneffe, M.-C., MacCartney, B., and Manning, C. D. 2006. Generating typed dependency parses from phrase structure parses. In International Conference on Language Resources and Evaluation (LREC).Google Scholar
Fellbaum, C. 1998. WordNet: An Electronic Lexical Database. The MIT Press, Cambridge, MA, USA.CrossRefGoogle Scholar
Giampiccolo, D., Magnini, B., Dagan, I., Dolan, B., and Pantel, P. (eds.) 2007. Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing.Google Scholar
Glickman, O., Dagan, I., and Koppel, M. 2005. A probabilistic classification approach for lexical textual entailment. In Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-05), pp. 10501055. The AAAI Press, Menlo Park, California, USA, 2005.Google Scholar
Harmeling, S. 2007. An extensible probabilistic transformation-based approach to the third Recognizing Textual Entailment Challenge. In Giampiccolo, D., Magnini, B., Dagan, I., Dolan, B. and Pantel, P. (eds.), Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pp. 137–142.Google Scholar
Hickl, A., and Bensley, J. 2007. A discourse commitment-based framework for Recognizing Textual Entailment. In Giampiccolo, D., Magnini, B., Dagan, I., Dolan, B. and Pantel, P. (eds.), Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pp. 171–176.Google Scholar
Iftene, A., and Balahur-Dobrescu, A. 2007. Hypothesis transformation and semantic variability rules used in Recognizing Textual Entailment. In Giampiccolo, D., Magnini, B., Dagan, I., Dolan, B. and Pantel, P. (eds.), Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pp. 125–130.Google Scholar
Klein, D., and Manning, C. D. 2003. Accurate unlexicalized parsing. In Proceedings of the 41st Meeting of the Association for Computational Linguistics, pp. 423–430.Google Scholar
Kouylekov, M., and Magnini, B. 2005. Recognizing Textual Entailment with tree edit distance algorithms. In Dagan, I., Glickman, O. and Magnini, B. (eds.), Proceedings of the first PASCAL Challenges Workshop on Recognising Textual Entailment, pp. 17–20.Google Scholar
Kouylekov, M. and Magnini, B. 2007. Tree edit distance for Recognizing Textual Entailment: estimating the cost of insertion. In Bar-Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo, D., Magnini, B. and Szpektor, I. (eds.), Proceedings of the Second PASCAL Challenges Workshop on Recognising Textual Entailment, pp. 68–73.Google Scholar
Muggleton, S. 1996. Stochastic logic programs. Advances in Inductive Logic Programming 32: 254–64.Google Scholar
Schölkopf, B. and Smola, A. J. 2001. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. The MIT Press, Cambridge, MA, USA.Google Scholar
Tatu, M., Iles, B., Slavick, J., Novischi, A., and Moldovan, D. 2006 COGEX at the second recognizing textual entailment challenge. In Bar-Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo, D., Magnini, B. and Szpektor, I. (eds.), Proceedings of the Second PASCAL Challenges Workshop on Recognising Textual Entailment, pp. 104–109.Google Scholar
Tatu, M., and Moldovan, D. 2007 COGEX at RTE 3. In Giampiccolo, D., Magnini, B., Dagan, I., Dolan, B. and Pantel, P. (eds.), Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pp. 22–27.Google Scholar