Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T11:03:50.924Z Has data issue: false hasContentIssue false

Special rays in the Mori cone of a projective variety

Published online by Cambridge University Press:  22 January 2016

Marco Andreatta
Affiliation:
Dipartimento di Matematica, Università degli Studi di Trento, Via Sommarive 14, I-38100 Povo (TN), ITALY, andreatt@science.unitn.it
Gianluca Occhetta
Affiliation:
Dipartimento di Matematica, Università degli Studi di Trento, Via Sommarive 14, I-38100 Povo (TN), ITALY, occhetta@science.unitn.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let X be a smooth n-dimensional projective variety over an algebraically closed field k such that KX is not nef. We give a characterization of non nef extremal rays of X of maximal length (i.e of length n – 1); in the case of Char(k) = 0 we also characterize non nef rays of length n – 2.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2002

References

[ABW92] Andreatta, M., Ballico, E., and Wisniewski, J. A., Vector bundles and adjunction, Intern. J. Math., 3 (1992), 331340.CrossRefGoogle Scholar
[ABW93] Andreatta, M., Ballico, E., and Wisniewski, J. A., Two theorems on elementary contractions, Math. Ann., 297 (1993), 191198.Google Scholar
[AW93] Andreatta, M. and Wisniewski, J. A., A note on nonvanishing and applications, Duke Math. J., 72 (1993), 739755.Google Scholar
[AW97] Andreatta, M., Ballico, E., and Wisniewski, J. A., A view on contraction of higher dimensional varieties, In “Algebraic Geometry - Santa Cruz 1995”, Proc. Sympos. Pure Math. 62, 153183. Amer. Math. Soc, Providence, RI, 1997.Google Scholar
[BS95] Beltrametti, C. M., and Sommese, A. J., The adjunction theory of complex projective varieties, Exp. Math. 16, de Gruyter, Berlin, 1995.Google Scholar
[CE01] Castelnuovo, G. and Enriques, F., Sopra alcune questioni fondamentali nella teoria delle superficie algebriche, Annali di matematica pura ed applicata, VI (1901), 165225.Google Scholar
[Fuj87] Fujita, T., On polarized manifold whose adjoint bundles are not semipositive, In “Algebraic geometry, Sendai”, Adv. Studies in Pure Math. 16, 167-178, Kinokuniya-North-Holland, 1987.Google Scholar
[Har77] Hartshorne, R., Algebraic Geometry, GTM 52, Springer-Verlag, 1977.CrossRefGoogle Scholar
[Keb00] Kebekus, S., Families of singular rational curves, J. Algebraic Geom., 11 (2002), 245256.CrossRefGoogle Scholar
[KK00] Kachi, Y. and Kollár, J., Characterization of n in arbitrary characteristic, Asian J. Math., 4 (2000), 115122.CrossRefGoogle Scholar
[Kol91] Kollár, J., Extremal rays on smooth threefolds, Ann. Sci. Ecole Norm. Sup., 24 (1991), 339361.CrossRefGoogle Scholar
[Kol96] Kollár, J., Rational Curves on Algebraic Varieties, Ergebnisse der Math. 32, Springer Verlag, Berlin, Heidelberg, New York, Tokyo, 1996.Google Scholar
[SB97] Shepherd-Barron, N.I., Fano threefolds in positive characteristic, Compositio Math., 105 (1997), 237265.Google Scholar