Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T19:40:33.175Z Has data issue: false hasContentIssue false

On the maximal connected algebraic subgroups of the Cremona group I

Published online by Cambridge University Press:  22 January 2016

Hiroshi Umemura*
Affiliation:
Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper is a continuation of the two preceding papers [12], [13] where the classification of the de Jonquières type subgroups in the Cremona group of 3 variables is promised. However the classification of such subgroups is postponed until the article in preparation “On the maximal connected algebraic subgroups of the Cremona group II”. The purpose of this paper is to establish a general method to study algebraic subgroups in the Cremona group of n variables and to illustrate how it works and leads to the classification of Enriques (Theorem (2.25)) when applied to the 2 variable case. This method gives us also the classification of the maximal connected algebraic subgroups of the Cremona group of 3 variables.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1982

References

[ 1 ] Borel, A., Linear algebraic groups, Benjamin, New York 1969.Google Scholar
[ 2 ] Chevalley, C., Théorie des groupes de Lie, Hermann, Paris, 1968.Google Scholar
[ 3 ] Demazure, M., Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Scient. Ec. Norm. Sup., 4e series, 3 (1970), 507588.Google Scholar
[ 4 ] Enriques, F., Sui gruppi continui di transformazioni crenomiane nel piano, Rendic. Accad. dei Lincei, 1893, 468473.Google Scholar
[ 5 ] Grothendieck, A., Le groupe de Brauer, I, II, Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam, 1968, 4666, 6787.Google Scholar
[ 6 ] Morosoff, V. V., Sur les groupes primitifs, in Russian with French summary, Mat. Sb. N.S., 5 (47) (1939), 355390.Google Scholar
[ 7 ] Rosenlicht, M., Some basic theorems on algebraic groups, Amer. J. of Math., 78 (1956), 401443.CrossRefGoogle Scholar
[ 8 ] Serre, J.-P., Groupes algébriques et corps de classes, Hermann, Paris, 1959.Google Scholar
[ 9 ] Serre, J.-P., Lie algebras and Lie groups, Benjamin, New York, 1965.Google Scholar
[10] Serre, J.-P., Algebres de Lie semi-simples complexes, Benjamin, New York, 1966.Google Scholar
[11] Sumihiro, H., Equivariant completion, J. Math. Kyoto Univ., 14 (1974), 128.Google Scholar
[12] Umemura, H., Sur les sous-groupes algébriques primitifs du groupe de Cremona à trois variables, Nagoya Math. J., 79 (1980), 4767.CrossRefGoogle Scholar
[13] Umemura, H., Maximal algebraic subgroups of the Cremona group of three variables, Nagoya Math. J., 87 (1982), 5978.Google Scholar
[14] Umemura, H., On the maximal connected algebraic subgroups of the Cremona group II, in preparation.Google Scholar
[15] Weil, A., On algebraic group of transformations, Amer. J. Math., 77 (1955), 355391.Google Scholar