Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T01:48:09.719Z Has data issue: false hasContentIssue false

On the k-Buchsbaum property of powers of Stanley–Reisner ideals

Published online by Cambridge University Press:  11 January 2016

Nguyên Công Minh
Affiliation:
Department of Mathematics Hanoi National University of Education, Hanoi, Vietnam, minhnc@hnue.edu.vn
Yukio Nakamura
Affiliation:
Department of Mathematics School of Science and Technology Meiji University, Kawasaki-shi 214-8571, Japan, ynakamu@meiji.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let S = K[x1,x2,…,xn] be a polynomial ring over a field K. Let Δ be a simplicial complex whose vertex set is contained in {1, 2,…,n}. For an integer k ≥ 0, we investigate the k-Buchsbaum property of residue class rings S/I(t); and S/It for the Stanley-Reisner ideal I = IΔ. We characterize the k-Buchsbaumness of such rings in terms of the simplicial complex Δ and the power t. We also give a characterization in the case where I is the edge ideal of a simple graph.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2014

References

[BH] Bruns, W. and Herzog, J., Cohen–Macaulay Rings, rev. ed., Cambridge University Press, Cambridge, 1998. MR 1251956.Google Scholar
[CN] Cowsik, R. C. and Nori, M. V., On the fibres of blowing up, J. Indian Math. Soc. (N.S.) 40 (1976), 217222. MR 0572990.Google Scholar
[GH] Giang, D. H. and Hoa, L. T., On local cohomology of a tetrahedral curve, Acta Math. Vietnam. 35 (2010), 229241. MR 2731325.Google Scholar
[GT] Goto, S. and Takayama, Y., Stanley–Reisner ideals whose powers have finite length cohomologies, Proc. Amer. Math. Soc. 135 (2007), 23552364. MR 2302556. DOI 10.1090/S0002-9939-07-08795-3.CrossRefGoogle Scholar
[HTT] Herzog, J., Takayama, Y., and Terai, N., On the radical of a monomial ideal, Arch. Math. (Basel) 85 (2005), 397408. MR 2181769. DOI 10.1007/s00013-005-1385-z.CrossRefGoogle Scholar
[M] Minh, N. C., Cohen–Macaulayness of ideals associated with graphs, Ph.D. dissertation, Meiji University, Kawasaki, Japan, 2009.Google Scholar
[MN1] Minh, N. C. and Nakamura, Y., The Buchsbaum property of symbolic powers of Stanley–Reisner ideals of dimension 1, J. Pure Appl. Algebra 215 (2011), 161167. MR 2720681. DOI 10.1016/j.jpaa.2010.04.007.CrossRefGoogle Scholar
[MN2] Minh, N. C. and Nakamura, Y., Buchsbaumness of ordinary powers of two-dimensional square-free mono- mial ideals, J. Algebra 327 (2011), 292306. MR 2746039. DOI 10.1016/j.jalgebra. 2010.07.027.CrossRefGoogle Scholar
[MN3] Minh, N. C. and Nakamura, Y., A note on the k-Buchsbaum property of symbolic powers of Stanley– Reisner ideals, Tokyo J. Math. 34 (2011), 221227. MR 2866644. DOI 10.3836/ tjm/1313074452.CrossRefGoogle Scholar
[MT1] Minh, N. C. and Trung, N. V., Cohen–Macaulayness of powers of two-dimensional square-free monomial ideals, J. Algebra 322 (2009), 42194227. MR 2558862. DOI 10.1016/j.jalgebra.2009.09.014.CrossRefGoogle Scholar
[MT2] Minh, N. C. and Trung, N. V., Cohen–Macaulayness of monomial ideals and symbolic powers of Stanley– Reisner ideals, Adv. Math. 226 (2011), 12851306. MR 2737785. DOI 10.1016/j.aim.2010.08.005.CrossRefGoogle Scholar
[RTY] Rinaldo, G., Terai, N., and Yoshida, K.-I., Cohen–Macaulayness for symbolic power ideals of edge ideals, J. Algebra 347 (2011), 122. MR 2846393. DOI 10.1016/j.jalgebra.2011.09.007.CrossRefGoogle Scholar
[S] Schrijver, A., Combinatorial Optimization, Polyhedra and Efficiency, Vol. C: Disjoint Paths, Hypergraphs, Chapters 7083, Algorithms Combin. 24, C, Springer, Berlin, 2003. MR 1956926.Google Scholar
[SV] Stückrad, J. and Vogel, W., Buchsbaum Rings and Applications: An Interaction between Algebra, Geometry and Topology, Springer, Berlin, 1986. MR 0881220.Google Scholar
[T] Takayama, Y., Combinatorial characterizations of generalized Cohen–Macaulay monomial ideals, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 48(96) (2005), 327344. MR 2165349.Google Scholar
[TT] Terai, N. and Trung, N. V., Cohen–Macaulayness of large powers of Stanley–Reisner ideals, Adv. Math. 229 (2012), 711730. MR 2855076. DOI 10.1016/j.aim.2011.10.004.CrossRefGoogle Scholar
[TY] Terai, N. and Yoshida, K.-I., Locally complete intersection Stanley–Reisner ideals, Illinois J. Math. 53 (2009), 413429. MR 2594636.CrossRefGoogle Scholar
[V] Varbaro, M., Symbolic powers and matroids, Proc. Amer. Math. Soc. 139 (2011), 23572366. MR 2784800. DOI 10.1090/S0002-9939-2010-10685-8.Google Scholar