Hostname: page-component-cb9f654ff-pvkqz Total loading time: 0 Render date: 2025-08-24T13:27:51.097Z Has data issue: false hasContentIssue false

On the bergman kernel of hyperconvex domains

Published online by Cambridge University Press:  22 January 2016

Takeo Ohsawa*
Affiliation:
Department of Mathematics, School of Science, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let D be a bounded pseudoconvex domain in Cn , and let KD (z, w) be the Bergman kernel function of D. The boundary behavior of KD (z, w), or that of KD (z, z), has attracted a lot of attention because it is closely related to the pseudoconformal geometry of D and ∂D.

Information

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1993

References

[C] Catlin, D., Subelliptic estimates for the -Neumann problem on pseudoconvex domains, Ann. of Math., 126 (1986), 131191.Google Scholar
[De] Demailly, J. P., Estimation L 2 pour l’operateur d’un fibre vectoriel holomorphe semi-positif au-dessus d’une variété kãhlérienne complète, Ann. sc. Ec. Norm. Sup., 15 (1982), 457511.Google Scholar
[D] Diederich, K., Das Randverhalten der Bergmanschen Kernfunktion und Metrik in streng pseudokonvexen Gebieten, Math. Ann., 189 (1970), 936.Google Scholar
[D-H-O] Diedreich, K., Herbort, G. and Ohsawa, T., The Bergman kernel on uniformly extendable pseudoconvex domains, Math. Ann., 273 (1986), 471478.Google Scholar
[E] Earle, C. J., On the Carathéodory metric in Teichmüller spaces, in Discontinuous groups and Riemann surfaces, Ann. Math. Stud., 79, Princeton University Press, 1974.Google Scholar
[F-K] Farkas, H. M. and Kra, I., Riemann surfaces, Springer-Verlag, 1991.Google Scholar
[F] Fefferman, C., The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math., 26 (1974), 165.Google Scholar
[H] Hayman, W. K., Subharmonic functions Vol. 2, London Math. Soc. Monograph No. 20, Academic Press 1989.Google Scholar
[Hö] Hörmander, L., L 2-estimates and existence theorems for the -operator, Acta Math., 113 (1965), 89152.Google Scholar
[Kr] Krushkal’, S. L., Strengthening pseudoconvexity of finite-dimensional Teichmüller spaces, Math. Ann., 290 (1991), 681687.Google Scholar
[O-1] Ohsawa, T., Boundary behavior of the Bergman kernel function on pseudoconvex domains, Publ. RIMS, Kyoto Univ., 20 (1984), 897902.Google Scholar
[O-2] Ohsawa, T., Vanishing theorems on complete Kãhler manifolds, Publ. RIMS, Kyoto Univ., 20 (1984), 2138.Google Scholar
[O-3] Ohsawa, T., On the extension of L 2 holomorphic functions II, Publ. RIMS, Kyoto Univ., 24 (1988), 265274.Google Scholar
[O-T] Ohsawa, T. and Takegoshi, K., On the extension of L 2 holomorphic functions, Math. Z., 197 (1988), 112.Google Scholar
[P] Poincaré, H., Théorie du potentiel Newtonien, Leçons professées à la Sorbonne, Paris, 1899.Google Scholar
[S] Stehlé, J. L., Fonctions plurisubharmoniques et convexite holomorphe de certaines fibrès analytiques, C. R. Hebd. Acad. Sci. Ser. A-B 279 (1964), 235238.Google Scholar
[W] Wiener, N., Certain notions in potential theory, J. Math. Mass. Inst. Tech., 3 (1924), 2451.Google Scholar
[Z] Zalcman, L., Bounded analytic functions on domains of infinite connectivity, Trans. Amer. Math. Soc., 144 (1969), 241269.Google Scholar