Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T21:26:15.686Z Has data issue: false hasContentIssue false

On Some Doubly Transitive Permutation Groups of Degree N And Order 6n(n – 1)

Published online by Cambridge University Press:  22 January 2016

Shiro Iwasaki
Affiliation:
Mathematical Institute, Hokkaido University
Hiroshi Kimura
Affiliation:
Mathematical Institute, Hokkaido University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let Ω be the set of symbols 1,2,..., n. Let be a doubly transitive group on Ω of order 6n(n — 1) not containing a regular normal subgroup and let be the stabilizer of the set of symbols 1 and 2.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1970

References

[1] Feit, W., On a class of doubly transitive permutation groups, 111. J. Math., 4 (1960), 170186.Google Scholar
[2] Gorenstein, D. and Walter, J.H., The characterization of finite groups with dihedral Sylow 2-subgroups, I, II, III, J. Alg., 2 (1965), 85151, 218270, 334393.Google Scholar
[3] Ito, N., On a class of doubly transitive permutation groups, 111. J. Math., 6 (1962), 341352.Google Scholar
[4] Ito, N., On doubly transitive groups of degree n and order 2(n—1)n . Nagoya Math. J., 27 (1966), 409417.CrossRefGoogle Scholar
[5] Kegel, O., Produkte nilpotenter Gruppen, Arch. Math., 12 (1961), 9093.CrossRefGoogle Scholar
[6] Kimura, H., On doubly transitive permutation groups of degree n and order 4(n—l)n , J. Math. Soc. Japan (to appear).Google Scholar
[7] Kimura, H., On some doubly transitive permutation groups of degree n and order 2l(n—1)n , (to appear).Google Scholar
[8] Lüneburg, H., Charakterisierungen der endlichen desarguesschen Ebenen, Math. Z. 85 (1964), 419450.CrossRefGoogle Scholar
[9] Wielandt, H., Finite permutation groups, Academic Press, New York, 1964.Google Scholar
[10] Zassenhaus, H., Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen, Hamb. Abh., 11 (1936), 1740.Google Scholar