Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T00:58:32.055Z Has data issue: false hasContentIssue false

ON A BERNSTEIN–SATO POLYNOMIAL OF A MEROMORPHIC FUNCTION

Published online by Cambridge University Press:  06 June 2023

KIYOSHI TAKEUCHI*
Affiliation:
Mathematical Institute Tohoku University Aramaki Aza-Aoba 6-3 Aobaku, Sendai 980-8578, Japan

Abstract

We define Bernstein–Sato polynomials for meromorphic functions and study their basic properties. In particular, we prove a Kashiwara–Malgrange-type theorem on their geometric monodromies, which would also be useful in relation with the monodromy conjecture. A new feature in the meromorphic setting is that we have several b-functions whose roots yield the same set of the eigenvalues of the Milnor monodromies. We also introduce multiplier ideal sheaves for meromorphic functions and show that their jumping numbers are related to our b-functions.

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical Journal

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

To the memory of Professor Hikosaburo Komatsu

References

Àlvarez Montaner, J., González Villa, M., León-Cardenal, E., and Núñez-Betancourt, L., Bernstein–Sato polynomial and related invariants for meromorphic functions, preprint, arXiv:2112.08492v1Google Scholar
Àlvarez Montaner, J., Jeffries, J., and Núñez-Betancourt, L., Bernstein–Sato polynomials in commutative algebra, Commutative Algebra, 1-76, Springer. 2021.10.1007/978-3-030-89694-2_1CrossRefGoogle Scholar
Bahloul, R., Algorithm for computing Bernstein–Sato ideals associated with a polynomial mapping , J. Symb. Comput. 32 (2001), 643662.CrossRefGoogle Scholar
Bahloul, R., Démonstration constructive de l’existence de polynômes de Bernstein–Sato pour plusieurs fonctions analytiques, Compos. Math. 141 (2005), 175191.CrossRefGoogle Scholar
Bahloul, R. and Oaku, T., Local Bernstein–Sato ideals: Algorithm and examples , J. Symb. Comput. 45 (2010), 4659.CrossRefGoogle Scholar
Budur, N., Bernstein–Sato Polynomials and Generalizations, Lecture Notes, Rolduc, Abbey, 2013.Google Scholar
Budur, N., “Mixed Hodge modules and their applications” in Applications of Mixed Hodge Modules: Multiplier Ideals, Notes from a Lecture at the Workshop, Clay Mathematics Institute, Oxford, 2013, 1923.Google Scholar
Budur, N., Mustata, M., and Saito, M., Bernstein–Sato polynomials of arbitrary varieties , Compos. Math. 142 (2006), 779797.CrossRefGoogle Scholar
Budur, N. and Saito, M., Multiplier ideals, V-filtration, and spectrum , J. Algebraic Geom. 14 (2005), 269282.CrossRefGoogle Scholar
Budur, N., van der Veer, R., Wu, L., and Zhou, P., Zero loci of Bernstein–Sato ideals , Invent. Math. 225 (2021), 4572.CrossRefGoogle Scholar
Denef, J. and Loeser, F., Caractéristique d’Euler–Poincaré, fonctions zêta locales et modifications analytiques , J. Amer. Math. Soc. 5 (1992), 705720.Google Scholar
Dimca, A., Sheaves in Topology, Universitext, Springer, Berlin, 2004.CrossRefGoogle Scholar
Ein, L., Lazarsfeld, R., Smith, K., and Varolin, R., Jumping coefficients of multiplier ideals , Duke Math. J. 123 (2004), 469506.CrossRefGoogle Scholar
González Villa, M. and Lemahieu, A., The monodromy conjecture for plane meromorphic germs , Bull. Lond. Math. Soc. 46 (2014), 441453.CrossRefGoogle Scholar
Gusein-Zade, S., Luengo, I., and Melle-Hernández, A., Zeta-functions for germs of meromorphic functions and Newton diagrams , Funct. Anal. Appl. 32 (1998), 2635.CrossRefGoogle Scholar
Gyoja, A., Bernstein–Sato’s polynomial for several analytic functions , J. Math. Kyoto Univ. 33 (1993), 399411.Google Scholar
Hotta, R., Takeuchi, K., and Tanisaki, T., D-Modules, Perverse Sheaves, and Representation Theory, Birkhäuser, Boston, 2008.CrossRefGoogle Scholar
Kashiwara, M., B-functions and holonomic systems, rationality of roots of B-functions , Invent. Math. 38 (1976), 3353.CrossRefGoogle Scholar
Kashiwara, M., Vanishing Cycle Sheaves and Holonomic Systems of Differential Equations, Lecture Notes in Math. 1016, Springer, Berlin, 1983, 134142.Google Scholar
Kashiwara, M., D-Modules and Microlocal Calculus, Amer. Math. Soc., Providence, RI, 2003; translated from the 2000 Japanese original by Mutsumi Saito.Google Scholar
Kashiwara, M. and Schapira, P., Sheaves on Manifolds, Springer, Berlin–Heidelberg, 1990.10.1007/978-3-662-02661-8CrossRefGoogle Scholar
Lazarsfeld, R., Positivity in Algebraic Geometry. II. Positivity for Vector Bundles, and Multiplier Ideals, Springer, Berlin–Heidelberg, 2004.10.1007/978-3-642-18810-7CrossRefGoogle Scholar
Malgrange, B., Polynômes de Bernstein–Sato et cohomologie évanescente , Astérisque 101 (1983), 243267.Google Scholar
Mebkhout, Z. and La Narváez-Macarro, L., Théorie du polynôme de Bernstein–Sato pour les algèbres de Tate et de Dwork–Monsky–Washnitzer , Ann. Sci. Éc. Norm. Supér. 24 (1991), 227256.CrossRefGoogle Scholar
Mebkhout, Z. and Sabbah, C., D-modules et cycles évanescents, Le formalisme des six opérations de Grothendieck pour les D-modules cohérents, Travaux en cours 35, Hermann, Paris, 1989, Section III.4, 201239.Google Scholar
Milnor, J., Singular Points of Complex Hypersurfaces, Princeton University Press, Princeton, 1968.Google Scholar
Mustata, M. and Popa, M., Hodge ideals , Mem. Amer. Math. Soc. 262 (2019), 1268.Google Scholar
Nadel, A. M., Multiplier ideal sheaves and Kähler–Einstein metrics of positive scalar curvature , Ann. of Math. (2) 132 (1990), 549596.CrossRefGoogle Scholar
Nguyen, T. T. and Takeuchi, K., Meromorphic nearby cycle functors and monodromies of meromorphic functions (with Appendix by T. Saito) , Rev. Mat. Complut. 36 (2023), 663705.CrossRefGoogle Scholar
Oaku, T., An algorithm of computing b-functions , Duke Math. J. 87 (1997), 115132.CrossRefGoogle Scholar
Oaku, T. and Takayama, N., An algorithm for de Rham cohomology groups of the complement of an affine variety via D-module computation , J. Pure Appl. Algebra 139 (1999), 201233.CrossRefGoogle Scholar
Raibaut, M., Motivic Milnor fibers of a rational function , Rev. Mat. Complut. 26 (2013), 705734.CrossRefGoogle Scholar
Sabbah, C., Proximité évanescente. I , Compos. Math. 62 (1987), 283328.Google Scholar
Sabbah, C., Proximité évanescente. II , Compos. Math. 64 (1987), 213241.Google Scholar
Sabbah, C., Introduction to Mixed Hodge Modules, Personal Note of a Mini Course, Angers, 2019.Google Scholar
Saito, M., On microlocal b-functions , Bull. Soc. Math. France 122 (1994), 163184.CrossRefGoogle Scholar
Ucha, J. M. and Castro-Jiménez, F. J., On the computation of Bernstein–Sato ideals , J. Symb. Comput. 37 (2004), 629639.CrossRefGoogle Scholar
Veys, W. and Zuniga-Galindo, W. A., Zeta functions and oscillatory integrals for meromorphic functions , Adv. Math. 311 (2017), 295337.CrossRefGoogle Scholar