Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T02:45:39.982Z Has data issue: false hasContentIssue false

Nakajima Monomials and Crystals for Special Linear Lie Algebras

Published online by Cambridge University Press:  11 January 2016

Hyeonmi Lee*
Affiliation:
Korea Institute for Advanced Study, 207-43 Cheongryangri-dong, Dongdaemun-gu, Seoul 130-722, Korea, hmlee@kias.re.kr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nakajima introduced a certain set of monomials realizing the irreducible highest weight crystals B(λ). The monomial set can be extended so that it contains crystal B(∞) in addition to B(λ). We present explicit descriptions of the crystals B(∞) and B(λ) over special linear Lie algebras in the language of extended Nakajima monomials. There is a natural correspondence between the monomial description and Young tableau realization, which is another realization of crystals B(∞) and B(λ).

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2007

References

[1] Cliff, G., Crystal bases and Young tableaux, J. Algebra, 202 (1998), no. 1, 1035.CrossRefGoogle Scholar
[2] Hong, J. and Kang, S.-J., Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, vol. 42, Amer. Math. Soc., Providence, RI, 2002.CrossRefGoogle Scholar
[3] Hong, J. and Lee, H., Young tableaux and crystal B(∞) for finite simple Lie algebras, arXiv:math.QA/0507448.CrossRefGoogle Scholar
[4] Jantzen, J. C., Lectures on quantum groups, Graduate Studies in Mathematics, vol. 6, Amer. Math. Soc., Providence, RI, 1996.Google Scholar
[5] Kang, S.-J., Kashiwara, M., and Misra, K. C., Crystal bases of Verma modules for quantum affine Lie algebras, Compositio Math., 92 (1994), no. 3, 299325.Google Scholar
[6] Kang, S.-J., Kim, J.-A., and Shin, D.-U., Monomial realization of crystal bases for special linear Lie algebras, J. Algebra, 274 (2004), no. 2, 629642.CrossRefGoogle Scholar
[7] Kang, S.-J., Kim, J.-A., and Shin, D.-U., Crystal bases for quantum classical algebras and Nakajima’s monomials, Publ. Res. Inst. Math. Sci., 40 (2004), no. 3, 757791.CrossRefGoogle Scholar
[8] Kashiwara, M., The crystal base and Littelmann’s refined Demazure character formula, Duke Math. J., 71 (1993), no. 3, 839858.CrossRefGoogle Scholar
[9] Kashiwara, M., Realizations of crystals, Combinatorial and geometric representation theory (Seoul, 2001), Contemp. Math., vol. 325, Amer. Math. Soc., Providence, RI, 2003, pp. 133139.CrossRefGoogle Scholar
[10] Kashiwara, M. and Nakashima, T., Crystal graphs for representations of the q-analogue of classical Lie algebras, J. Algebra, 165 (1994), no. 2, 295345.CrossRefGoogle Scholar
[11] Kashiwara, M. and Saito, Y., Geometric constructin of crystal bases, Duke Math. J., 89 (1997), 936.CrossRefGoogle Scholar
[12] Kim, J.-A., Monomial realization of crystal graphs for Uq(A(n (1)), Math. Ann., 332 (2005), no. 1, 1735.CrossRefGoogle Scholar
[13] Lee, H., Extended Nakajima monomials and realization of crystal B(∞), KIAS preprint M05008.Google Scholar
[14] Lee, H., Realizations of crystal B(∞) using Young tableaux and Young walls, J. Algebra, in press.Google Scholar
[15] Lee, H., Extended Nakajima monomials and crystal B(∞) for finite simple Lie algebras, KIAS preprint M05019, J. Algebra, in press.Google Scholar
[16] Nakajima, H., t-analogue of the q-characters of finite dimensional representations of quantum affine algebras, Physics and Combinatorics (Nagoya, 2000), World Sci. Publ., River Edge, NJ, 2001, pp. 196219.Google Scholar
[17] Nakajima, H., t-analogs of q-characters of quantum affine algebras of type An, Dn, Combinatorial and geometric representation theory (Seoul, 2001), Contemp. Math., vol. 325, Amer. Math. Soc., Providence, RI, 2003, pp. 141160.CrossRefGoogle Scholar
[18] Nakashima, T. and Zelevinsky, A., Polyhedral realizations of crystal bases for quantized Kac-Moody algebras, Adv. Math., 131 (1997), no. 1, 253278.CrossRefGoogle Scholar
[19] Saito, Y., Combinatorial and geometric realization of crystal B(∞) for type An , KIAS lecture, 2002.Google Scholar
[20] Savage, A., A geometric construction of crystal graphs using quiver varieties: extension to the non-simply laced case, Infinite-dimensional aspects of representation theory and applications, Contemp. Math., vol. 392, Amer. Math. Soc., Providence, RI, 2005, pp. 133154.CrossRefGoogle Scholar
[21] Savage, A., Geometric and combinatorial realizations of crystals of enveloping algebras, arXiv:math.QA/0601511, Contemp. Math., in press.Google Scholar
[22] Shin, D.-U., Crystal bases and monomials for Uq(G2)-modules, KIAS preprint M04012.Google Scholar