Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T23:10:29.193Z Has data issue: false hasContentIssue false

m-Blocks Collections and Castelnuovo-mumford Regularity in multiprojective spaces

Published online by Cambridge University Press:  11 January 2016

L. Costa
Affiliation:
Facultat de Matemàtiques Departament d’Algebra i Geometria Gran Via de les CortsCatalanes 585 08007Barcelona Spaincosta@ub.edu
R. M. Miró-Roig
Affiliation:
Facultat de Matemàtiques Departament d’Algebra i Geometria Gran Via de les CortsCatalanes 585 08007Barcelona Spainmiro@ub.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The main goal of the paper is to generalize Castelnuovo-Mumford regularity for coherent sheaves on projective spaces to coherent sheaves on n-dimensional smooth projective varieties X with an n-block collection B which generates the bounded derived category To this end, we use the theory of n-blocks and Beilinson type spectral sequence to define the notion of regularity of a coherent sheaf F on X with respect to the n-block collection B. We show that the basic formal properties of the Castelnuovo-Mumford regularity of coherent sheaves over projective spaces continue to hold in this new setting and we compare our definition of regularity with previous ones. In particular, we show that in case of coherent sheaves on ℙn and for the n-block collection Castelnuovo-Mumford regularity and our new definition of regularity coincide. Finally, we carefully study the regularity of coherent sheaves on a multiprojective space ℙn1x…x ℙnr with respect to a suitable n1 +…+ nr-block collection and we compare it with the multigraded variant of the Castelnuovo-Mumford regularity given by Hoffman and Wang in [14].

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2007

References

[1] Beilinson, A. A., Coherent sheaves on Pn and Problems of Linear Algebra, Funkt. Anal. Appl., 12 (1979), 214216.CrossRefGoogle Scholar
[2] Bondal, A. I., Representation of associative algebras and coherent sheaves, Math. USSR Izvestiya, 34 (1990), 2342.CrossRefGoogle Scholar
[3] Bondal, A. I. and Polishchuk, A. E., Homological properties of associative algebras: the method of helices, Russian Acad. Sci. Izv. Math., 42 (1994), 219259.Google Scholar
[4] Chipalkatti, J. V., A generalization of Castelnuovo regularity to Grassmann varieties, manusc. math., 102 (2000), 447464.CrossRefGoogle Scholar
[5] Costa, L. and Mirù-Roig, R. M., Tilting sheaves on toric varieties, Math. Z., 248 (2004), 849865.CrossRefGoogle Scholar
[6] Costa, L. and Mirù-Roig, R. M., Geometric collections and Castelnuovo-Mumford regularity, Math. Proc. Cambridge, to appear.Google Scholar
[7] Costa, L. and Mirù-Roig, R. M., Cohomological characterization of vector bundles on multiprojective spaces, J. of Algebra, 294 (2005), 7396.CrossRefGoogle Scholar
[8] Drezet, J. M. and Potier, J. Le, Fibrés stables et fibrés exceptionelles sur P2 , Ann. Ec. Norm. Sup., 18 (1985), 193244.CrossRefGoogle Scholar
[9] Dubrovin, B., Geometric and analytic theory of Frobenius manifolds, Documenta Math. Special Issue ICM Berlin 1998, pp. 315326.Google Scholar
[10] Fulton, W. and Harris, J., Representation Theory: A first course, Graduate text in Math. 129, Springer-Verlag, 1991.Google Scholar
[11] Gorodentsev, A. L. and Kuleshov, S. A, Helix Theory, Preprint MPI (2001), 97.Google Scholar
[12] Gorodentsev, L. and Rudakov, A. N., Exceptional Vector Bundles on the Projective Space, Duke Math. J., 54 (1987), 115130.CrossRefGoogle Scholar
[13] Hille, L., Consistent algebras and special tilting sequences, Math. Z., 220 (1995), 189205.CrossRefGoogle Scholar
[14] Hoffman, J. W. and Wang, H. H., Castelnuovo-Mumford regularity in biprojective spaces, Adv. Geom., 4 (2004), 513536.CrossRefGoogle Scholar
[15] Kapranov, M. M., On the derived category of coherent sheaves on Grassmann manifolds, Math. USSR Izvestiya, 24 (1985), 183192.CrossRefGoogle Scholar
[16] Kapranov, M. M., On the derived category of coherent sheaves on some homogeneous spaces, Invent. Math., 92 (1988), 479508.CrossRefGoogle Scholar
[17] Karpov, B. V. and Nogin, D. Yu, Three-block exceptional collections over Del Pezzo surfaces, Math. USSR Izvestiya, 62 (1998), 429463.CrossRefGoogle Scholar
[18] Maclagan, D. and Smith, G. G., Multigraded Castelnuovo-Mumford regularity, J. Reine Angew. Math., 571 (2004), 179212.Google Scholar
[19] Mumford, D., Lectures on curves on an algebraic surface, Princeton University Press, Princeton, N.J., 1966.Google Scholar
[20] Verdier, J. L., Des catègories dèrivées des catègories abéliennes, Astérisque, 239 (1996).Google Scholar