Hostname: page-component-cb9f654ff-kl2l2 Total loading time: 0 Render date: 2025-08-16T17:33:26.179Z Has data issue: false hasContentIssue false

The law of the iterated logarithm on subsequences-characterizations

Published online by Cambridge University Press:  22 January 2016

Michel Weber*
Affiliation:
Université Louis Pasteur, Uer de Mathématiques et Informatique, 7, rue René Descartes, 67084 Strasbourg Cedex, France
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let be any increasing sequence of integers and M> 1; we connect to them in a very simply way, an increasing unbounded function φ:R+ . Let also X1, X2 , · · · be a sequence of i.i.d. random vectors with value in euclidian space Rm . We prove that the cluster set of the sequence almost surely coincides with the unit ball of Rm , if, and only if, the covariance matrix of X1 is the identity matrix of Rm and EX1 is the zero vector of Rm . We define a functional A on the set of increasing sequences of integers as follows:

.

Information

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1990

References

[1] Borell, C., The Brunn-Minkowski inequality in Gauss space, Invent. Math., 30 (1975), 207216.CrossRefGoogle Scholar
[2] Breiman, L., Probability. Addison Wesley, 1968.Google Scholar
[3] Chung, K. L., Erdos, P. and Sirao, T., On the Lipschitz’s conditions for Brownian motion, J. Math. Soc. Japan, 11 (1959), 263274.CrossRefGoogle Scholar
[4] Fernique, X., Régularité des trajectoires des fonctions aléatoires gaussiennes, Ecole d’été de Probabilités de Saint-Flour 1974, Lecture Notes in Math., 480 (1975), 196. Springer, Berlin.Google Scholar
[5] Finkelstein, H., The law of the iterated logarithm for empirical distributions, Ann. of Math. Stat., 42 (1971), 607615.CrossRefGoogle Scholar
[6] Gut, A., The law of the iterated on subsequences, Publ. Uppsala University, 1983.Google Scholar
[7] Hartman, P. and Wintner, A., On the law of the iterated logarithm, Amer. J. Math., 63 (1941), 169176.CrossRefGoogle Scholar
[8] Hoffman-Jørgensen, J., Sums of independent Banach space valued random variables, Studia Math., 52 (1974), 159186.CrossRefGoogle Scholar
[9] Kuelbs, J., The law of the iterated logarithm and related strong convergence theorems for Banach space valued random variables, Ecole d’été de Probabilité de Saint-Flour 1975. Lecture Notes in Math., 539 (1976), 224314. Springer, Berlin.Google Scholar
[10] Ledoux, M. and Talagrand, M., Characterization of the law of the iterated logarithm in Banach spaces, Ann. of Prob., 16, (1988), 12421264.CrossRefGoogle Scholar
[11] Strassen, V., An invariance principle for the law of the iterated logarithm, Z. Wahrsch. verw. Geb., 3 (1964), 211226.CrossRefGoogle Scholar
[12] Strassen, V., A converse to the law of the iterated logarithm, Z. Wahrsch. verw. Geb., 4 (1966), 265268.CrossRefGoogle Scholar
[13] Talagrand, M., Regularity of gaussian processes, Acta Math., 159 (1987), 99149.CrossRefGoogle Scholar
[14] Torrang, I., The law of the iterated logarithm — cluster points of deterministic and random subsequences, Prob. Math. Stat., 8 (1987), 133141.Google Scholar
[15] Vaughan, R. C., The Hardy-Littlewood method, Cambridge University Press, 1981.Google Scholar
[16] Weber, M., La loi du logarithme itéré sur les sous-suites, Comptes Rendus Acad. Sci. Paris, 303 Sér. 1 (1986), 7780.Google Scholar
[17] Weber, M., La loi du logarithme itéré sur toute sous-suite, caractérisations, C.R. Acad. Paris, 305 (1987), 835840.Google Scholar
[18] Weber, M., The law of the iterated logarithm for subsequences in Banach spaces, Prob. in Banach spaces VII, (1988), to appear in Birkhäuser ed., Progress in Prob. and Stat.Google Scholar
[19] Yurinskii, V. V., Exponential bound for large deviations, Theor. Prob., Appl., 19 (1974),154155.CrossRefGoogle Scholar