Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T22:05:39.606Z Has data issue: false hasContentIssue false

Kummer surfaces associated to (1, 2)-polarized abelian surfaces

Published online by Cambridge University Press:  11 January 2016

Afsaneh Mehran*
Affiliation:
Section de Mathématiques, Université de Genève, 1211 Genéve 4, SwitzerlandAfsaneh.Mehran@unige.ch
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aim of this paper is to describe the geometry of the generic Kummer surface associated to a (1, 2)-polarized abelian surface. We show that it is the double cover of a weak del Pezzo surface and that it inherits from the del Pezzo surface an interesting elliptic fibration with twelve singular fibers of type I2.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2011

References

[B] Beauville, A., Préliminaires sur les périodes des surfaces K3, Astérisque 126 (1985), 9197.Google Scholar
[BL] Birkenhake, C. and Lange, H., Complex Abelian Varieties, 2nd ed., Grundlehren Math. Wiss. 302, Springer, Berlin, 2004.Google Scholar
[H] Hudson, R. W. H. T., Kummer’s Quartic Surface, revised reprint of the 1905 original, Cambridge Math. Lib., Cambridge University Press, Cambridge, 1990.Google Scholar
[K] Keum, J. H., Automorphisms of Jacobian Kummer surfaces, Compos. Math. 107 (1997), 269288.CrossRefGoogle Scholar
[M] Mehran, A., Double covers of Kummer surfaces, Manuscripta Math. 123 (2007), 205235.CrossRefGoogle Scholar
[Na] Naruki, I., On metamorphosis of Kummer surfaces, Hokkaido Math. J. 20 (1991), 407415.CrossRefGoogle Scholar
[Ni1] Nikulin, V. V., Kummer surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 278293.Google Scholar
[Ni2] Nikulin, V. V., Finite groups of automorphisms of Kählerian K3 surfaces, Tr. Mosk. Mat. Obs. 38 (1979), 75137.Google Scholar
[PŠŠ] Pjateckiĭ-Šapiro, I. I. and Šafarevič, I. R., Torelli’s theorem for algebraic surfaces of type K3, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 530572.Google Scholar
[SI] Shioda, T. and Inose, H., “On singular K3 surfaces” in Complex Analysis and Algebraic Geometry, Iwanami, Tokyo, 1977, 119136.Google Scholar