Hostname: page-component-cb9f654ff-plnhv Total loading time: 0.001 Render date: 2025-09-02T19:08:29.806Z Has data issue: false hasContentIssue false

Kontsevich’s integral for the Kauffman polynomial

Published online by Cambridge University Press:  22 January 2016

Thang Tu Quoc Le*
Affiliation:
Max-Planck-Institut für Mathematik, Gottfried-Claren-Strasse 26, D-53225, Bonn 3, Germany
Jun Murakami
Affiliation:
Department of Mathematics, Osaka University, Toyonaka, Osaka 560, Japan, E-mail adress: jun@math.sci.osaka-u.ac.jp
*
Department of Mathematics, 106 Diefendorf SUNY at Buffalo, Buffalo NY 14214, USA, e-mail adress: letu@math.buffalo.edu
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Kontsevich’s integral is a knot invariant which contains in itself all knot invariants of finite type, or Vassiliev’s invariants. The value of this integral lies in an algebra A0 , spanned by chord diagrams, subject to relations corresponding to the flatness of the Knizhnik-Zamolodchikov equation, or the so called infinitesimal pure braid relations [11].

Information

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1996

References

[ 1 ] Altschuler, D., Coste, A., Quasi-quantum groups, knots, three-manifolds, and topological field theory, Commun. Math. Phys., 150 (1992), 83107.CrossRefGoogle Scholar
[ 2 ] Arnol’d, V. I. The First European Congress of Mathematics, Paris July 1992, Birk-hauser 1993, Basel.Google Scholar
[ 3 ] Bar-Natan, D., On the Vassiliev knot invariants, Topology, 34 (1995), 423472.CrossRefGoogle Scholar
[ 4 ] Birman, J. S. and Lin, X. S., Knot polynomials and Vassiliev’s invariants, Invent. Math., 111 (1993), 225270.CrossRefGoogle Scholar
[ 5 ] Chen, K. T., Iterated path integrals, Bull. Amer. Math. Soc, 83 (1977), 831879.CrossRefGoogle Scholar
[ 6 ] Drinfel’d, V. G., On Quasi-Hopf algebras, Leningrad Math. J., 1 (1990) 14191457.Google Scholar
[ 7 ] Drinfel’d, V. G., On quasitriangular quasi-Hopf algebras and a group closely connected with Gal(Q/Q), Leningrad Math. J., 2 (1990), 829860.Google Scholar
[ 8 ] Golubeva, V. A., On the recovery of a Pfaffian system of Fuchsian type from the generators of the monodromy group, Math. USSR Izvestija, 17 (1981), 227241.CrossRefGoogle Scholar
[ 9 ] Kauffman, L. H., State models and the Jones polynomial, Topology 26 (1987), 375407.CrossRefGoogle Scholar
[10] Kirby, R., Melvin, P., The 3-manifold invariants of Witten and Reshetikhin-Turaev for sl(2, C), Invent. Math., 105 (1991), 473545.CrossRefGoogle Scholar
[11] Kohno, T., Hecke algebra representations of braid groups and classical Yang-Baxter equations, Conformal field theory and solvable lattice models (Kyoto, 1986), Adv. Stud. Pure Math., 16 (1986), 255269.Google Scholar
[12] Kontsevich, M., Vassiliev’s knot invariants, Advances in Soviet Mathematics, 16 (1993), 137150.Google Scholar
[13] Le, T.Q.T., Murakami, J., Kontsevich’s integral for HOMFLY polynomial and relation between values of multiple zeta functions, Topology Appl., 62 (1995), 193206.CrossRefGoogle Scholar
[14] Le, T.Q.T., Murakami, J., Representation of tangles by Kontsevich’s integral, Commun. Math. Phys., 168 (1995), 535562.CrossRefGoogle Scholar
[15] Lin, X. S., Vertex models, quantum groups and Vassiliev’s knot invariants, Columbia University, preprint 1992.Google Scholar
[16] Piunikhin, S. A., Weight of Feynman diagrams, link polynomials and Vassiliev knot invariants, preprint Moscow 1992.Google Scholar
[17] Reshetikhim, N. Yu., Quantized universal enveloping algebras, the Yang-Baxter equations and invariant of links, I, II, Preprints E-87, E-88, Leningrad LOMI, 1988.Google Scholar
[18] Reshetikhim, N. Yu., Quasitriangular Hopf algebras and invariants of tangles, Leningrad J. Math., 1 (1990), 491513.Google Scholar
[19] Reshetikhin, N. Yu. and Turaev, V. G., Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys., 127 (1990), 262288.CrossRefGoogle Scholar
[20] Turaev, T. G., The Yang-Baxter equation and invariants of links, Invent. Math., 92 (1988), 527553.CrossRefGoogle Scholar
[21] Turaev, T. G., Operator invariants of tangles and R-matrices, Math. USSR Izv., 35 (1990),411444.CrossRefGoogle Scholar