Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T02:58:49.878Z Has data issue: false hasContentIssue false

Holomorphic Mappings into Projective Space with Lacunary Hyperplanes

Published online by Cambridge University Press:  22 January 2016

Peter Kiernan
Affiliation:
Department of Mathematics, University of British Columbia
Shoshichi Kobayashi
Affiliation:
Department of Mathematics, University of California, Berkeley
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this note, we shall examine some results of Bloch [2] and Cartan [3] concerning complex projective space minus hyperplanes in general position. The purpose is to restate their results in a more general setting by using the intrinsic pseudo-distance defined on a complex space [16] and the concept of tautness introduced by Wu in [18]. In the process we shall generalize some results of Dufresnoy [4] and Fuj imoto [7].

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1973

References

[1] Barth, T., The Kobayashi distance induces the standard topology, Proc. A.M.S., 35 (1972), 439441.Google Scholar
[2] Bloch, A., Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires, Ann. de l’Ecole Normale, 43 (1926), 309362.Google Scholar
[3] Cartan, H., Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires et leurs applications, Ann. de PEcole Normale, 45 (1928), 255346.Google Scholar
[4] Dufresnoy, J., Théorie nouvelle des familles complexes normales, Ann. de l’Ecole Normale, 61 (1944), 144.Google Scholar
[5] Eisenman, D., Intrinsic measures on complex manifolds and holomorphic mappings, Mem. Amer. Math. Soc, No. 96 (1970).CrossRefGoogle Scholar
[6] Fujimoto, H., On holomorphic maps into a taut complex space, Nagoya Math. J., 46 (1972), 4961.CrossRefGoogle Scholar
[7] Fujimoto, H., Extensions of the big Picard theorem, Tohoku Math. J., 24 (1972), 415422.Google Scholar
[8] Fujimoto, H., Families of holomorphic maps into projective space omitting some hyperplanes, to appear in J. Math. Soc. Japan.Google Scholar
[9] Grauert, H., Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., 146 (1962), 331368.Google Scholar
[10] Green, M., Holomorphic maps into complex projective space omitting hyperplanes, Trans. A.M.S., 169 (1972), 89103.Google Scholar
[11] Green, M., Some Picard theorems for holomorphic maps to algebraic varieties, Thesis (1972), Princeton.Google Scholar
[12] Kiernan, P., On the relations between taut, tight and hyperbolic manifolds, Bull. A.M.S., 76 (1970), 4951.CrossRefGoogle Scholar
[13] Kiernan, P., Extension of holomorphic maps, Trans. A.M.S., 172 (1972), 347355.Google Scholar
[14] Kiernan, P., Hyperbolically imbedded spaces and the big Picard theorem, to appear in Math. Annalen.Google Scholar
[15] Kiernan, P. and Kobayashi, S., Satake compactification and extension of holomorphic mappings, Invent. Math., 16 (1972), 237248.Google Scholar
[16] Kobayashi, S., Hyperbolic manifolds and holomorphic mappings, Marcel Dekker, New York, 1970.Google Scholar
[17] Kobayashi, S. and Ochiai, T., Satake compactification and the great Picard theorem, J. Math. Soc. Japan, 23 (1971), 340350.Google Scholar
[18] Wu, H., Normal families of holomorphic mappings, Acta Math., 119 (1967), 193233.Google Scholar