Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T16:54:36.489Z Has data issue: false hasContentIssue false

Endomorphisms of Deligne-Lusztig Varieties

Published online by Cambridge University Press:  11 January 2016

F. Digne
Affiliation:
LAMFA Universitée de Picardie-Jules Verne33 rue St Leu 80039, Amiens cedex 1Francedigne@u-picardie.fr
J. Michel
Affiliation:
Institut de MathématiquesUniversité Paris VII175 rue du Chevaleret 75013 ParisFrancejmichel@math.jussieu.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study some conjectures on the endomorphism algebras of the co-homology of Deligne-Lusztig varieties which are a refinement of those of [BMi].

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2006

References

[Be1] Bessis, D., Groupes des tresses et éléments réguliers, J. Crelle, 518 (2000), 140.Google Scholar
[Be2] Bessis, D., The dual braid monoid, Ann. ENS, 36 (2003), 647683.Google Scholar
[BDM] Bessis, D., Digne, F. and Michel, J., Springer theory in braid groups and the Birman-Ko-Lee monoid, Pacific J. Math., 205, no. 2 (2002), 287309.Google Scholar
[Bou] Bourbaki, N., Groupes et algebres de Lie, Chap. 4, 5 et 6, Masson, 1981.Google Scholar
[BMa] Broué, M. et Malle, G., Zyklotomische Heckealgebren, Astérisque, 212 (1993), 119189.Google Scholar
[BMM] Broué, M., Malle, G. and Michel, J., Towards Spetses I, Transformation groups, 4 (1999), 157218.Google Scholar
[BMi] Broué, M. et Michel, J., Sur certains éléments r#x00E9;guliers des groupes de Weyl et les variétés de Deligne-Lusztig associées, Progress in Math., 141 (1997), 73139.Google Scholar
[Br] Broué, M., Isométries parfaites, types de blocs, catégories déivées, Astérisque, 181182 (1990), 6192.Google Scholar
[BMR] Broué, M., Malle, G. and Rouquier, R., Complex reflection groups, braid groups, Hecke algebras, Crelle, 500 (1998), 127190.Google Scholar
[CR] Curtis, C. W. et Reiner, I., Methods of representation theory, with applications to finite groups and orders, vol. II, Wiley, 1987.Google Scholar
[De] Deligne, P., Action du groupe des tresses sur une catégorie, Invent. Math., 128 (1997), 159175.Google Scholar
[DM] Digne, F. et Michel, J., Representations of Finite Groups of Lie ype, London Math. Society Student Texts 21, Cambridge University Press, 1991.Google Scholar
[DMR] Digne, F., Michel, J. and Rouquier, R., Cohomologie des variétés de Deligne-Lusztig, arxiv:math.RT/0410454, to appear in Advances in Math.Google Scholar
[Dy] Dyer, M. J., Hecke Algebras and reflections in Coxeter groups, Ph. D. Thesis, University of Sydney (1987).Google Scholar
[E] Eilenberg, S., Sur les transformations périodiques de la surface de la sphère, Fund. Math., 22 (1934), 2841.Google Scholar
[Lu1] Lusztig, G., Representations of Finite Chevalley Groups, C.B.M.S., 39 (1978).Google Scholar
[Lu2] Lusztig, G., Coxeter Orbits and Eigenspaces of Frobenius, Invent. Math., 38 (1976), 101159.Google Scholar
[Lu3] Lusztig, G., Characters of reductive groups over finite fields, Annals of Math. studies 107, Princeton University press, 1984.Google Scholar
[Lu4] Lusztig, G., Character Sheaves, Advances in Math., 56 (1985), 193237, 57 (1985), 226265 and 266315, 59 (1986), 163, 61 (1986), 103165.Google Scholar
[Lu5] Lusztig, G., Hecke algebras with unequal parameters, CRM Monographs Ser. 18, Amer. Math. Soc, 2003.Google Scholar
[Mi] Michel, J., A note on words in braid monoids, Journal of Algebra, 215 (1999), 366377.Google Scholar
[Sh1] Shoji, T., Character sheaves and almost characters of reductive groups, Adv. in math., 111 (1995), 244313.Google Scholar
[Sh2] Shoji, T., Character sheaves and almost characters of reductive groups, II, Adv. in math., 111 (1995), 314354.Google Scholar
[Sp] Springer, T. A., Regular elements of finite reflection groups, Invent. Math., 25 (1974), 159198.Google Scholar
[VdL] der Lek, H. Van, The homotopy type of complex hyperplane complements, Thesis, Nijmegen (1983).Google Scholar