Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T19:51:36.812Z Has data issue: false hasContentIssue false

A dual to tight closure theory

Published online by Cambridge University Press:  11 January 2016

Neil Epstein
Affiliation:
Department of Mathematical Sciences George Mason University, Fairfax, Virginia 22030, USA, nepstei2@gmu.edu
Karl Schwede
Affiliation:
Department of Mathematics The Pennsylvania State University, University Park, Pennsylvania 16802, USA, schwede@math.psu.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce an operation on modules over an F-finite ring of characteristic p. We call this operation tight interior. While it exists more generally, in some cases this operation is equivalent to the Matlis dual of tight closure. Moreover, the interior of the ring itself is simply the big test ideal. We directly prove, without appeal to tight closure, results analogous to persistence, colon capturing, and working modulo minimal primes, and we begin to develop a theory dual to phantom homology. Using our dual notion of persistence, we obtain new and interesting transformation rules for tight interiors, and so in particular for the test ideal. Using our theory of phantom homology, we prove a vanishing theorem for maps of Ext. We also compare our theory with Blickle’s notion of Cartier modules, and in the process we prove new existence results for Blickle’s test submodule. Finally, we apply the theory we developed to the study of test ideals in nonnormal rings, proving that the finitistic test ideal coincides with the big test ideal in some cases.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2014

References

[Bl] Blickle, M., Test ideals via algebras of p-e-linear maps, J. Algebraic Geom. 22 (2013), 4983. MR 2993047. DOI 10.1090/S1056-3911-2012-00576-1.CrossRefGoogle Scholar
[BlB] Blickle, M. and Böckle, G., Cartier modules: Finiteness results, J. Reine Angew. Math. 661 (2011), 85123. MR 2863904. DOI 10.1515/CRELLE.2011.087.CrossRefGoogle Scholar
[Bo] Bourbaki, N., Commutative Algebra, Chapters 1–7, reprint of the 1989 English translation, Elem. Math. (Berlin), Springer, Berlin, 1998. MR 0979760.Google Scholar
[BSm] Bravo, A. and Smith, K. E., Behavior of test ideals under smooth and étale homo-morphisms, J. Algebra 247 (2002), 7894. MR 1873384. DOI 10.1006/jabr.2001.9010.CrossRefGoogle Scholar
[BM] Brenner, H. and Monsky, P., Tight closure does not commute with localization, Ann. of Math. (2) 171 (2010), 571588. MR 2630050. DOI 10.4007/annals.2010.171.571.CrossRefGoogle Scholar
[BrS] Brodmann, M. P. and Sharp, R. Y., Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge Stud. Adv. Math. 60, Cambridge University Press, Cambridge, 1998. MR 1613627. DOI 10.1017/CBO9780511629204.Google Scholar
[BHe] Bruns, W. and Herzog, J., Cohen-Macaulay Rings, Cambridge Stud. Adv. Math. 39, Cambridge University Press, Cambridge, 1993. MR 1251956.Google Scholar
[G] Gabber, O., “Notes on some t-structures” in Geometric Aspects of Dwork Theory, Vols. 1, 2 (Padova, 2001), Walter de Gruyter, Berlin, 2004, 711734. MR 2099084.Google Scholar
[HT] Hara, N. and Takagi, S., On a generalization of test ideals, Nagoya Math. J. 175 (2004), 5974. MR 2085311.CrossRefGoogle Scholar
[Ha] Hartshorne, R., Residues and Duality, with an appendix by Deligne, P., Lecture Notes in Math. 20, Springer, Berlin, 1966. MR 0222093.Google Scholar
[HaS] Hartshorne, R. and Speiser, R., Local cohomological dimension in characteristic p, Ann. of Math. (2) 105 (1977), 4579. MR 0441962.CrossRefGoogle Scholar
[He] Herzog, J., Ringe der Charakteristik p und Frobeniusfunktoren, Math. Z. 140 (1974), 6778. MR 0352081.CrossRefGoogle Scholar
[HH1] Hochster, M. and Huneke, C., “Tight closure and strong F-regularity” in Colloque en l’honneur de Pierre Samuel (Orsay, 1987), Mém. Soc. Math. Fr. (N.S.) 38 (1989), 119133. MR 1044348.Google Scholar
[HH2] Hochster, M. and Huneke, C., Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), 31116. MR 1017784. DOI 10.2307/1990984.Google Scholar
[HH3] Hochster, M. and Huneke, C., F-regularity, test elements, and smooth base change, Trans. Amer. Math. Soc. 346 (1994), no. 1, 162. MR 1273534. DOI 10.2307/2154942.Google Scholar
[HH4] Hochster, M. and Huneke, C., Tight closure in equal characteristic zero, preprint, http://www.lsa.umich.edu/math/˜hochster/tcz.ps (accessed 26 September 2013 ).Google Scholar
[H] Huneke, C., Tight Closure and Its Applications, with an appendix by Hochster, M., CBMS Reg. Conf. Ser. Math. 88, Amer. Math. Soc., Providence, 1996. MR 1377268.Google Scholar
[HS] Huneke, C. and Swanson, I., Integral Closure of Ideals, Rings, and Modules, London Math. Soc. Lecture Note Ser. 336, Cambridge University Press, Cambridge, 2006. MR 2266432.Google Scholar
[L] Lyubeznik, G., F-modules: Applications to local cohomology and D-modules in characteristic p > 0, J. Reine Angew. Math. 491 (1997), 65130. MR 1476089. DOI 10.1515/crll.1997.491.65.CrossRefGoogle Scholar
[LS1] Lyubeznik, G. and Smith, K. E., Strong and weak F -regularity are equivalent for graded rings, Amer. J. Math. 121 (1999), 12791290. MR 1719806.CrossRefGoogle Scholar
[LS2] Lyubeznik, G. and Smith, K. E., On the commutation of the test ideal with localization and completion, Trans. Amer. Math. Soc. 353 (2001), no. 8, 31493180. MR 1828602. DOI 10. 1090/S0002-9947-01-02643-5.CrossRefGoogle Scholar
[M] McCulloch, D. J., Tight closure and base change, Ph.D. dissertation, University of Michigan, Ann Arbor, Michigan, 1997. MR 2695845.Google Scholar
[PS] Peskine, C. and Szpiro, L., Dimension projective finie et cohomologie locale: Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Publ. Math. Inst. Hautes Études Sci. 42 (1973), 47119. MR 0374130.CrossRefGoogle Scholar
[S1] Schwede, K., F-adjunction, Algebra Number Theory 3 (2009), 907950. MR 2587408. DOI 10.2140/ant.2009.3.907.CrossRefGoogle Scholar
[S2] Schwede, K., Test ideals in non-Q-Gorenstein rings, Trans. Amer. Math. Soc. 363 (2011), no. 11, 59255941. MR 2817415. DOI 10.1090/S0002-9947-2011-05297-9.CrossRefGoogle Scholar
[ST] Schwede, K. and Tucker, K., On the behavior of test ideals under finite morphisms, preprint, arXiv:1003.4333v3 [math.AG].CrossRefGoogle Scholar
[Sm1] Smith, K. E., Tight closure of parameter ideals, Invent. Math. 115 (1994), 4160. MR 1248078. DOI 10.1007/BF01231753.CrossRefGoogle Scholar
[Sm2] Smith, K. E., Test ideals in local rings, Trans. Amer. Math. Soc. 347 (1995), no. 9, 34533472. MR 1311917. DOI 10.2307/2155019.CrossRefGoogle Scholar
[Sm3] Smith, K. E., The multiplier ideal is a universal test ideal, Comm. Algebra 28 (2000), 59155929. MR 1808611. DOI 10.1080/00927870008827196.CrossRefGoogle Scholar
[Sm4] Smith, K. E., Tight closure commutes with localization in binomial rings, Proc. Amer. Math. Soc. 129 (2001), 667669. MR 1706969. DOI 10.1090/ S0002-9939-00-05626-4.CrossRefGoogle Scholar
[T] Traves, W. N., Differential operators on monomial rings, J. Pure Appl. Algebra 136 (1999), 183197. MR 1674776. DOI 10.1016/S0022-4049(97)00170-9.CrossRefGoogle Scholar
[V] Vassilev, J. C., Test ideals in quotients of F-finite regular local rings, Trans. Amer. Math. Soc. 350 (1998), no. 10, 40414051. MR 1458336. DOI 10.1090/ S0002-9947-98-02128-X.Google Scholar