Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T15:22:14.254Z Has data issue: false hasContentIssue false

DERIVATIVES OF THETA FUNCTIONS AS TRACES OF PARTITION EISENSTEIN SERIES

Published online by Cambridge University Press:  20 January 2025

TEWODROS AMDEBERHAN
Affiliation:
Department of Mathematics, Tulane University New Orleans LA 70118 USA tamdeber@tulane.edu
KEN ONO*
Affiliation:
Department of Mathematics, University of Virginia Charlottesville VA 22904 USA
AJIT SINGH
Affiliation:
Department of Mathematics, University of Virginia Charlottesville VA 22904 USA ajit18@iitg.ac.in

Abstract

In his “lost notebook,” Ramanujan used iterated derivatives of two theta functions to define sequences of q-series $\{U_{2t}(q)\}$ and $\{V_{2t}(q)\}$ that he claimed to be quasimodular. We give the first explicit proof of this claim by expressing them in terms of “partition Eisenstein series,” extensions of the classical Eisenstein series $E_{2k}(q),$ defined by

$$ \begin{align*}\lambda=(1^{m_1}, 2^{m_2},\dots, n^{m_n}) \vdash n \ \ \ \longmapsto \ \ \ E_{\lambda}(q):= E_2(q)^{m_1} E_4(q)^{m_2}\cdots E_{2n}(q)^{m_n}. \end{align*} $$

For functions $\phi : \mathcal {P}\mapsto {\mathbb C}$ on partitions, the weight $2n$ partition Eisenstein trace is

$$ \begin{align*}\operatorname{\mathrm{Tr}}_n(\phi;q):=\sum_{\lambda \vdash n} \phi(\lambda)E_{\lambda}(q). \end{align*} $$

For all t, we prove that $U_{2t}(q)=\operatorname {\mathrm {Tr}}_t(\phi _U;q)$ and $V_{2t}(q)=\operatorname {\mathrm {Tr}}_t(\phi _V;q),$ where $\phi _U$ and $\phi _V$ are natural partition weights, giving the first explicit quasimodular formulas for these series.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical Journal

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amdeberhan, T., Ono, K. and Singh, A., MacMahon’s sums-of-divisors and allied q-series , Adv. Math. 452 (2024), Article 109820.CrossRefGoogle Scholar
Andrews, G. E., Theory of Partitions, Cambridge University Press, Cambridge, 1998.Google Scholar
Andrews, G. E. and Berndt, B. C., Ramanujan’s Lost Notebook, Part II, Springer, New York, 2009.Google Scholar
Apostol, T. M., Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.Google Scholar
Berndt, B. C., Chan, S. H., Liu, Z.-G. and Yesilyurt, H., A new identity for ${\left(q;q\right)}_{\infty}^{10}$ with an application to Ramanujan’s partition congruence modulo 11 , Q. J. Math. 55 (2004), 1330.CrossRefGoogle Scholar
Berndt, B. C. and Yee, A. J., A page on Eisenstein series in Ramanujan’s lost notebook , Glasg. Math. J. 45 (2003), 123129.CrossRefGoogle Scholar
Carlitz, L. and Subbarao, M. V., A simple proof of the quintuple product identity , Proc. Amer. Math. Soc. 32 (1972), no. 1, 4244.CrossRefGoogle Scholar
Gradshteyn, I. S. and Ryzhik, I. M., Table of integrals, series, and products. Translated from the Russian. Translation edited and with a preface by Victor Moll and Daniel Zwillinger, 8th updated and revised edition, Elsevier/Academic Press, Amsterdam, 2015.Google Scholar
Just, M. and Schneider, R., Partition Eisenstein series and semi-modular formsPartition Eisenstein series and semi-modular forms , Res. Number Theory 7 (2021), Paper No. 61.CrossRefGoogle Scholar
Kaneko, M. and Zagier, D., A generalized Jacobi theta function and quasimodular forms , in The Moduli Space of Curves (Texas Island, 1994), Progr. Math., 129, Birkhäuser Boston, Boston, MA, 1995, pp. 165172.CrossRefGoogle Scholar
Ono, K., The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and $q$ -Series, CBMS Regional Conference Series in Mathematics, vol. 102, The American Mathematical Society, Providence, RI, 2004.Google Scholar
Ramanujan, S., The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi; Berlin, New York, 1988. Springer-Verlag, Reprinted 2008.Google Scholar
Ramanujan, S., On certain arithmetical functions , Trans. Camb. Phil. Soc. 22 (1916), 159184.Google Scholar
Stanley, R. P., Enumerative Combinatorics, Vol. 2, Cambridge Stud. Adv. Math., 62 Cambridge University Press, Cambridge, 1999.CrossRefGoogle Scholar