Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T02:38:16.904Z Has data issue: false hasContentIssue false

Cyclotomic Nazarov-Wenzl Algebras

Published online by Cambridge University Press:  11 January 2016

Susumu Ariki
Affiliation:
Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502, Japan, ariki@kurims.kyoto-u.ac.jp
Andrew Mathas
Affiliation:
School of Mathematics and Statistics F07, University of Sydney, NSW 2006, Australia, a.mathas@maths.usyd.edu.au
Hebing Rui
Affiliation:
Department of Mathematics, East China Normal University, 200062 Shanghai, P. R. China, hbrui@math.ecnu.edu.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nazarov [Naz96] introduced an infinite dimensional algebra, which he called the affine Wenzl algebra, in his study of the Brauer algebras. In this paper we study certain “cyclotomic quotients” of these algebras. We construct the irreducible representations of these algebras in the generic case and use this to show that these algebras are free of rank rn(2n−1)!! (when Ω is u-admissible). We next show that these algebras are cellular and give a labelling for the simple modules of the cyclotomic Nazarov-Wenzl algebras over an arbitrary field. In particular, this gives a construction of all of the finite dimensional irreducible modules of the affine Wenzl algebra.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2006

References

[AK94] Ariki, S. and Koike, K., A Hecke algebra of (Z/rZ) and construction of its irreducible representations, Adv. Math., 106 (1994), 216243.CrossRefGoogle Scholar
[AM00] Ariki, S. and Mathas, A., The number of simple modules of the Hecke algebras of type G(r, 1, n), Math. Z., 233 (2000), 601623.CrossRefGoogle Scholar
[Ari96] Ariki, S., On the decomposition numbers of the Hecke algebra of G(m, 1,n), J. Math. Kyoto Univ., 36 (1996), 789808.Google Scholar
[Ari01] Ariki, S., On the classification of simple modules for cyclotomic Hecke algebras of type G(m, 1,n) and Kleshchev multipartitions, Osaka J. Math., 38 (2001), 827837.Google Scholar
[Bra37] Brauer, R., On algebras which are connected with the semisimple continuous groups, Ann. of Math., 38 (1937), 857872.CrossRefGoogle Scholar
[Bro56] Brown, W. P., The semisimplicity of , Ann. of Math. (2), 63 (1956), 324335.CrossRefGoogle Scholar
[BW89] Birman, J. S. and Wenzl, H., Braids, link polynomials and a new algebra, Trans. Amer. Math. Soc, 313 (1989), 249273.CrossRefGoogle Scholar
[CGW05] Cohen, A. M., Gijsbers, D. A. H. and Wales, D. B., BMW algebras of simply laced type, J. Algebra, 286 (2005), 107153.CrossRefGoogle Scholar
[CPS88] Cline, E., Parshall, B. and Scott, L., Finite-dimensional algebras and highest weight categories, J. Reine Angew. Math., 391 (1988), 8599.Google Scholar
[DJM99] Dipper, R., James, G. and Mathas, A., Cyclotomic q-Schur algebras, Math. Z., 229 (1999), 385416.CrossRefGoogle Scholar
[DM02] Dipper, R. and Mathas, A., Morita equivalences of Ariki-Koike algebras, Math. Z., 240 (2002), 579610.Google Scholar
[Don99] Donkin, S., The q-Schur algebra, Lond. Math. Soc. Lecture Notes, 253, CUP, Cambridge, 1999.CrossRefGoogle Scholar
[DWH99] Doran, W. F. IV, Wales, D. B. and Hanlon, P. J., On the semisimplicity of the Brauer centralizer algebras, J. Algebra, 211 (1999), 647685.CrossRefGoogle Scholar
[Eny04] Enyang, J., Cellular bases for the Brauer and Birman-Murakami-Wenzl algebras, J. Algebra, 281 (2004), 413449.CrossRefGoogle Scholar
[FG95] Fishel, S. and Grojnowski, I., Canonical bases for the Brauer centralizer algebra, Math. Res. Lett., 2 (1995), 1526.Google Scholar
[GH] Goodman, F. M. and Hauschild, H. M., Affine Birman-Wenzl-Murakami Algebras and Tangles in the Solid Torus, arXiv:math.QA/0411155.Google Scholar
[GL96] Graham, J. J. and Lehrer, G. I., Cellular algebras, Invent. Math., 123 (1996), 134.CrossRefGoogle Scholar
[Gre80] Green, J. A., Polynomial representations of gl n , SLN, 830, Springer-Verlag, New York, 1980.Google Scholar
[HO01] Haring-Oldenburg, R., Cyclotomic Birman-Murakami-Wenzl algebras, J. Pure Appl. Algebra, 161 (2001), 113144.Google Scholar
[HR95] Halverson, T. and Ram, A., Characters of algebras containing a Jones basic construction: the Temperley-Lieb, Okasa, Brauer, and Birman-Wenzl algebras, Adv. Math., 116 (1995), 263321.CrossRefGoogle Scholar
[HW89a] Hanlon, P. and Wales, D., Eigenvalues connected with Brauer’s centralizer algebras, J. Algebra, 121 (1989), 446476.Google Scholar
[HW89b] Hanlon, P. and Wales, D., On the decomposition of Brauer’s centralizer algebra, J. Algebra, 121 (1989), 409445.CrossRefGoogle Scholar
[JM00] James, G. D. and Mathas, A., The Jantzen sum formula for cyclotomic q-Schur algebras, Trans. Amer. Math. Soc, 352 (2000), 53815404.CrossRefGoogle Scholar
[Jon94] Jones, V. F. R., A quotient of the affine Hecke algebra in the Brauer algebra, ‘Enseign. Math., 40 (1994), 313344.Google Scholar
[Kle05] Kleshchev, A. S., Lectures on linear and projective representations of symmetric groups, CUP, 2005.Google Scholar
[LR97] Leduc, R. and Ram, A., A ribbon Hopf algebra approach to the irreducible representations of centralizer algebras: the Brauer, Birman-Wenzl, and type A Iwahori-Hecke algebras, Adv. Math., 125 (1997), 194.CrossRefGoogle Scholar
[Mac95] Macdonald, I. G., Symmetric functions and Hall polynomials, second ed., Oxford Mathematical Monographs, Clarendon Press, Oxford, 1995.CrossRefGoogle Scholar
[Mar96] Martin, P., The structure of the partition algebras, J. Algebra, 183 (1996), 319358.Google Scholar
[Mat99] Mathas, A., Hecke algebras and Schur algebras of the symmetric group, Univ. Lecture Notes, 15, Amer. Math. Soc, 1999.CrossRefGoogle Scholar
[Mat04] Mathas, A., Matrix units and generic degrees for the Ariki-Koike algebras, J. Algebra, 281 (2004), 695730.CrossRefGoogle Scholar
[Mur83] Murphy, G. E., The idempotents of the symmetric group and Nakayama’s conjecture, J. Algebra, 81 (1983), 258265.CrossRefGoogle Scholar
[MW00] Morton, H. R. and Wassermann, A. J., A basis for the Birman-Wenzl algebra, preprint (2000).Google Scholar
[Naz96] Nazarov, M., Young’s orthogonal form for Brauer’s centralizer algebra, J. Algebra, 182 (1996), 664693.CrossRefGoogle Scholar
[OR] Orellana, R. and Ram, A., Affine braids, Markov traces and the category O, arXiv:math.RT/0401317.Google Scholar
[PK98] Parvathi, M. and Kamaraj, M., Signed Brauer’s algebras, Comm. Algebra, 26 (1998), 839855.CrossRefGoogle Scholar
[PK02] Parvathi, M. and Kamaraj, M., Matrix units for signed Brauer’s algebras, Southeast Asian Bull. Math., 26 (2002), 279297.Google Scholar
[PS02] Parvathi, M. and Savithri, D., Representations of G-Brauer algebras, Southeast Asian Bull. Math., 26 (2002), 453468.CrossRefGoogle Scholar
[Ram95] Ram, A., Characters of Brauer’s centralizer algebras, Pacific J. Math., 169 (1995), 173200.CrossRefGoogle Scholar
[Rui05] Rui, H., A criterion on semisimple Brauer algebra, J. Comb. Theory, Ser. A, 111 (2005), 7888.Google Scholar
[RY04] Rui, H. and Yu, W., On the semisimplicity of cyclotomic Brauer algebras, J. Algebra, 277 (2004), 187221.Google Scholar
[Sun86] Sundaram, S., On the combinatorics of representations of Sp(2n,C), Thèse, Massachusetts Institute of Technology (1986).Google Scholar
[Ter01] Terada, I., Brauer diagrams, updown tableaux and nilpotent matrices, J. Algebraic Combin., 14 (2001), 229267.CrossRefGoogle Scholar
[Wen88] Wenzl, H., On the structure of Brauer’s centralizer algebras, Ann. of Math., 128 (1988), 173193.CrossRefGoogle Scholar
[Wey97] Weyl, H., The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997, Their invariants and representations, Fifteenth printing, Princeton Paperbacks.Google Scholar
[Xi00] Xi, C., On the quasi-heredity of Birman-Wenzl algebras, Adv. Math., 154 (2000), 280298.Google Scholar