Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T03:41:33.321Z Has data issue: false hasContentIssue false

Bounded p.s.h. functions and pseudoconvexity in Kähler manifold

Published online by Cambridge University Press:  22 January 2016

Takeo Ohsawa
Affiliation:
Graduate School of Mathematics, Nagoya University, Chikusa-hu, Nagoya 464-8602, Japan
Nessim Sibony
Affiliation:
Univ. Paris Sud, Mathématiques, Bât 425, 91405 Orsay, France
Rights & Permissions [Opens in a new window]

Abstract.

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is proved that the C2-smoothly bounded pseudoconvex domains in Pn admit bounded plurisubharmonic exhaustion functions. Further arguments are given concerning the question of existence of strictly plurisubharmonic functions on neighbourhoods of real hypersurfaces in Pn.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1998

References

[D.F] Diederich, K., Fornaess, J. E., Pseudoconvex domains: Bounded strictly plurisubharmonic functions, Invent. Math., 39 (1977), 129141.CrossRefGoogle Scholar
[E] Eléncwajg, G., Pseudoconvexité locale dans les variétés kähleriennes, Ann. Inst. Fourier, 25 (1975), 295314.CrossRefGoogle Scholar
[G.W] Greene, R. E. and Wu, H., On Kähler manifolds of positive bisectional curvature and a theorem of Hartogs, Abh. Math. Sem. Univ. Hamburg, 47 (1978), 171185.CrossRefGoogle Scholar
[H] Hirshowitz, A., Pseudoconvexité au dessus d’espaces plus ou moins homogenes, Invent. Math., 26 (1974), 303322.CrossRefGoogle Scholar
[M] Mok, N., The uniformization theorem for compact Kähler manifolds of monnegative holomorphic bisectional curvature, J. Differential Geom., 27 (1988), 179214.CrossRefGoogle Scholar
[S] Sibony, N., some aspects of weakly pseudoconvex domains in several complex variables and complex geometry, Proceedings of symposia in Pure Math., 62 part 1 (1991), 199231.CrossRefGoogle Scholar
[Suz] Suzuki, O., Pseudoconvex domains on a Kähler manifold with positive holomorphic bisectional curvature, Pubk. Res. Inst. Math. Sci., 12 (1976), 191214.CrossRefGoogle Scholar
[Su] Sullivan, D., Cycles for dynamical study of foliated manifolds and complex manifolds, Invent. Math., 36 (1976), 225255.CrossRefGoogle Scholar
[T] Takeuchi, A., Domains pseudoconvexes infinis et la metrique riemannienne daus un espace projectif J. Math. Soc. Japan, 16 (1964), 159181.Google Scholar