Hostname: page-component-cb9f654ff-w5vf4 Total loading time: 0 Render date: 2025-08-06T04:33:03.947Z Has data issue: false hasContentIssue false

AN ASYMPTOTIC ESTIMATE FOR THE CHARACTERISTIC AND NUMBER OF FIXED POINTS OF THE RIEMANN ZETA FUNCTION

Published online by Cambridge University Press:  01 August 2025

BAO QIN LI*
Affiliation:
Department of Mathematics and Statistics https://ror.org/02gz6gg07 Florida International University Miami , Florida 33199 United States
JÖRN STEUDING
Affiliation:
Department of Mathematics https://ror.org/00fbnyb24 University of Würzburg 97074 Würzburg Germany steuding@mathematik.uni-wuerzburg.de
YUTA SUZUKI
Affiliation:
Department of Mathematics https://ror.org/00x194q47 Rikkyo University 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501 Japan suzuyu@rikkyo.ac.jp

Abstract

We will give a precise and explicit asymptotic estimate for the characteristic of the Riemann zeta function $\zeta $ with an error term of order $O(\frac {\log r}{r})$ and a corresponding asymptotic estimate for the number of fixed points of $\zeta $.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical Journal

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bourgade, P. and Keating, J. P., “Quantum chaos, random matrix theory, and the Riemann $\zeta$ -function” in Chaos: Poincaré Seminar 2010, Progress in Mathematical Physics, 66, edited by Duplantier, B., Nonnenmacher, S. and Rivasseau, V., Springer, Basel, 2013, 125168.10.1007/978-3-0348-0697-8_4CrossRefGoogle Scholar
Goldberg, A. A. and Ostrovskii, I. V., Value distribution of meromorphic functions, American Mathematical Society, Providence, RI, 2008.10.1090/mmono/236CrossRefGoogle Scholar
Levinson, N., Almost all roots of $\zeta (s)=a$ are arbitrarily close to $\sigma =1/2$ , Proc. Nat. Acad. Sci. USA 72 (1975), 13221324.10.1073/pnas.72.4.1322CrossRefGoogle Scholar
Li, B. Q. and Steuding, J., Fixed points of the Riemann zeta function and Dirichlet series , Monatsh. Math. 198 (2022), 581589.10.1007/s00605-022-01709-xCrossRefGoogle Scholar
Liao, L. and Yang, C. C., On some new properties of the gamma function and the Riemann zeta function , Math. Nachr. 257 (2003), 5966.10.1002/mana.200310078CrossRefGoogle Scholar
Montgomery, H., Nikeghbali, A. and Rassias, M. T., Exploring the Riemann zeta function, Springer, Cham, 2017.10.1007/978-3-319-59969-4CrossRefGoogle Scholar
Montgomery, H. L. and Vaughan, R. C., Multiplicative number theory: I. Classical theory, Cambridge Studies in Advanced Mathematics, Vol. 97, Cambridge University Press, Cambridge, 2006.10.1017/CBO9780511618314CrossRefGoogle Scholar
Nevanlinna, R., Analytic functions, Springer-Verlag, Berlin, 1970.10.1007/978-3-642-85590-0CrossRefGoogle Scholar
Rademacher, H., On the Phragmén–Lindelöf theorem and some applications , Math. Z. 72 (1959), 192204.10.1007/BF01162949CrossRefGoogle Scholar
Ru, M., Nevanlinna theory and its relation to diophantine approximation, 2nd ed., World Scientific, Singapore, 2021.10.1142/12188CrossRefGoogle Scholar
Selberg, A., “Old and new conjectures and results about a class of Dirichlet series” in Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), edited by Bombieri, E. et al., University of Salerno, Salerno, 1957, 365385.Google Scholar
Steuding, J., Value-distribution of $L$ -functions, Lecture Notes in Mathematics, 1877, Springer, Berlin, 2007.Google Scholar
Titchmarch, E. C., The theory of the Riemann zeta-function, 2nd ed., Oxford University Press, Oxford, 1986.Google Scholar
Titchmarch, E. C., The theory of functions, 2nd ed., Oxford University Press, Oxford, 1952.Google Scholar
Trudgian, T. S., An improved upper bound for the argument of the Riemann zeta-function on the critical line II , J. Number Theory 134 (2014), 280292.10.1016/j.jnt.2013.07.017CrossRefGoogle Scholar
Ye, Z., The Nevanlinna functions of the Riemann zeta-function , J. Math. Anal. Appl. 233 (1999), 425435.10.1006/jmaa.1999.6343CrossRefGoogle Scholar