Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T01:27:28.506Z Has data issue: false hasContentIssue false

STRONGLY QUASI-HEREDITARY ALGEBRAS AND REJECTIVE SUBCATEGORIES

Published online by Cambridge University Press:  27 February 2018

MAYU TSUKAMOTO*
Affiliation:
Department of Mathematics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan email m13sa30m19@st.osaka-cu.ac.jp

Abstract

Ringel’s right-strongly quasi-hereditary algebras are a distinguished class of quasi-hereditary algebras of Cline–Parshall–Scott. We give characterizations of these algebras in terms of heredity chains and right rejective subcategories. We prove that any artin algebra of global dimension at most two is right-strongly quasi-hereditary. Moreover we show that the Auslander algebra of a representation-finite algebra $A$ is strongly quasi-hereditary if and only if $A$ is a Nakayama algebra.

Type
Article
Copyright
© 2018 Foundation Nagoya Mathematical Journal  

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work is supported by Grant-in-Aid for JSPS Fellowships No. H15J09492.

References

Assem, I., Simson, D. and Skowroński, A., Elements of the representation theory of associative algebras. Vol. 1, London Mathematical Society Student Texts, Techniques of Representation Theory 65 , Cambridge University Press, Cambridge, 2006.Google Scholar
Auslander, M., Representation Dimension of Artin Algebras, Queen Mary College, 1970.Google Scholar
Auslander, M., Reiten, I. and Smalø, S. O., Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics 36 , Cambridge University Press, Cambridge, 1995.Google Scholar
Auslander, M. and Smalø, S. O., Preprojective modules over Artin algebras , J. Algebra 66(1) (1980), 61122.Google Scholar
Cline, E., Parshall, B. and Scott, L., Finite-dimensional algebras and highest weight categories , J. Reine Angew. Math. 391 (1985), 8599.Google Scholar
Conde, T., The quasihereditary structure of the Auslander–Dlab–Ringel algebra , J. Algebra 460 (2016), 181202.Google Scholar
Conde, T., $\unicode[STIX]{x1D6E5}$ -filtrations and projective resolutions for the Auslander–Dlab–Ringel algebra, Algebr. Represent. Theory, preprint, 2017, arXiv:1703.03482v2.Google Scholar
Dlab, V. and Ringel, C. M., Every semiprimary ring is the endomorphism ring of a projective module over a quasihereditary ring , Proc. Amer. Math. Soc. 107(1) (1980), 15.Google Scholar
Dlab, V. and Ringel, C. M., Quasi-hereditary algebras , Illinois J. Math. 33(2) (1980), 280291.Google Scholar
Dlab, V. and Ringel, C. M., “ The module theoretical approach to quasi-hereditary algebras ”, in Representations of Algebras and Related Topics (Kyoto, 1990), London Math. Soc. Lecture Note Ser. 168 , Cambridge University Press, Cambridge, 1992, 200224.Google Scholar
Donkin, S., The q-Schur Algebra, London Mathematical Society Lecture Note Series 253 , Cambridge University Press, Cambridge, 1998.Google Scholar
Donkin, S. and Reiten, I., On Schur algebras and related algebras. V. Some quasi-hereditary algebras of finite type , J. Pure Appl. Algebra 97(2) (1994), 117134.Google Scholar
Eiríksson, Ö., From submodule categories to the stable Auslander algebra , J. Algebra 486 (2017), 98118.Google Scholar
Erdmann, K., Schur algebras of finite type , Quart. J. Math. Oxford Ser. (2) 44(173) (1993), 1741.Google Scholar
Geiss, C., Leclerc, B. and Schröer, J., Cluster algebra structures and semicanonical bases for unipotent groups, Algebr. Represent. Theory, preprint, 2007, arXiv:math/0703039v4.Google Scholar
Iyama, O., Finiteness of representation dimension , Proc. Amer. Math. Soc. 131(4) (2003), 10111014.Google Scholar
Iyama, O., Rejective subcategories of artin algebras and orders, Algebr. Represent. Theory, preprint, 2003, arXiv:math/0311281v1.Google Scholar
Iyama, O., “ Representation dimension and Solomon zeta function ”, in Representations of Finite Dimensional Algebras and Related Topics in Lie theory and Geometry, Fields Inst., Commun. 40 , Amer. Math. Soc., Providence, RI, 2004, 4564.Google Scholar
Iyama, O. and Reiten, I., 2-Auslander algebras associated with reduced words in Coxeter groups , Int. Math. Res. Not. IMRN (8) (2011), 17821803.Google Scholar
Parshall, B. and Scott, L., Derived Categories, Quasi-hereditary Algebras, and Algebraic Groups, Carlton University Mathematical Notes 3 , 1988, 1104.Google Scholar
Ringel, C. M., The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences , Math. Z. 208(2) (1991), 209223.Google Scholar
Ringel, C. M., Iyama’s finiteness theorem via strongly quasi-hereditary algebras , J. Pure Appl. Algebra 214(9) (2010), 16871692.Google Scholar
Scott, L., “ Simulating algebraic geometry with algebra. I. The algebraic theory of derived categories ”, in The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math. 47 , Amer. Math. Soc., Providence, RI, 1987, 271281. Part 2.Google Scholar
Stenström, B., “ An introduction to methods of ring theory ”, in Rings of Quotients, Die Grundlehren der Mathematischen Wissenschaften, Band 217 , Springer, New York-Heidelberg, 1975.Google Scholar
Uematsu, M. and Yamagata, K., On serial quasi-hereditary rings , Hokkaido Math. J. 19(1) (1990), 165174.Google Scholar