Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T23:42:19.491Z Has data issue: false hasContentIssue false

ZnO Nanostructures on Electrospun Nanofibers by Atomic Layer Deposition/Hydrothermal Growth and Their Photocatalytic Activity

Published online by Cambridge University Press:  23 September 2014

Fatma Kayaci
Affiliation:
UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, 06800, Turkey
Sesha Vempati*
Affiliation:
UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
Cagla Ozgit-Akgun
Affiliation:
UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, 06800, Turkey
Necmi Biyikli
Affiliation:
UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, 06800, Turkey
Tamer Uyar*
Affiliation:
UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, 06800, Turkey
*
*Authors for correspondence: svempati01@qub.ac.uk
Get access

Abstract

A hierarchy of nanostructured-ZnO was fabricated on the electrospun nanofibers by atomic layer deposition (ALD) and hydrothermal growth, subsequently. Firstly, we produced poly(acrylonitrile) (PAN) nanofibers via electrospinning, then ALD process provided a highly uniform and conformal coating of polycrystalline ZnO with a precise control on the thickness (50 nm). In the last step, this ZnO coating depicting dominant oxygen vacancies and significant grain boundaries was used as a seed on which single crystalline ZnO nanoneedles (average diameter and length of ∼25 nm and ∼600 nm, respectively) with high optical quality were hydrothermally grown. The detailed morphological and structural studies were performed on the resulting nanofibers, and the photocatalytic activity (PCA) was tested with reference to the degradation of methylene blue. The results of PCA were discussed in conjunction with photoluminescence response. The nanoneedle structures supported the vectorial transport of photo-charge carriers, which is crucial for high catalytic activity. The enhanced PCA, structural stability and reusability of the PAN/ZnO nanoneedles indicated that this hierarchical structure is a potential candidate for waste water treatment.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M. V., Li, D. and Alvarez, P. J. J., Water Res. 42, 4591 (2008).CrossRefGoogle Scholar
Meng, F., Chae, S. R., Drews, A., Kraume, M., Shin, H. S. and Yang, F., Water Res. 43, 1489 (2009).CrossRefGoogle Scholar
Khin, M. M., Nair, A. S., Babu, V. J., Murugan, R. and Ramakrishna, S., Energy Env. Sci. 5, 8075 (2012).CrossRefGoogle Scholar
Liu, H., Yang, J., Liang, J., Huang, Y. and Tang, C., J. Am. Ceram. Soc. 91, 1287 (2008).CrossRefGoogle Scholar
Sugunan, A., K.Guduru, V., Uheida, A., S.Toprak, M. and Muhammed, M. R., J. Am. Ceram. Soc. 93, 3740 (2010).CrossRefGoogle Scholar
Chang, Z., Chem. Comm. 47, 4427 (2011).CrossRefGoogle Scholar
Scharnagl, N., Buschatz, H., Desalination 139, 191 (2001).CrossRefGoogle Scholar
Yang, S., Liu, Z., J. Membr. Sci. 222, 87 (2003).CrossRefGoogle Scholar
Zhang, L., Luo, J., Menkhaus, T.J., Varadaraju, H., Sun, Y., Fong, H., J. Membr. Sci. 369, 499 (2011).CrossRefGoogle Scholar
Mei, Y., Yao, C., Fan, K., Li, X., J. Membr. Sci. 417, 20 (2012).CrossRefGoogle Scholar
Kayaci, F., Vempati, S., Ozgit-Akgun, C., Biyikli, N., Uyar, T., Applied Catalysis B: Environmental, http://dx.doi:10.1016/j.apcatb.2014.03.004, (2014).CrossRefGoogle Scholar
Kayaci, F., Ozgit-Akgun, C., Donmez, I., Biyikli, N., Uyar, T., ACS Appl, . Mater. Interfaces, 4, 6185 (2012).CrossRefGoogle Scholar
Kayaci, F., Ozgit-Akgun, C., Biyikli, N., Uyar, T., RSC Adv. 3, 6817 (2012).CrossRefGoogle Scholar
Wang, J., Liu, P., Fu, X., Li, Z., Han, W., Wang, X., Langmuir, 25 1218 (2009).CrossRefGoogle Scholar
Cho, S., Jang, J.-W., Lee, J.S., Lee, K.-H., Nanoscale, 4, 2066 (2012).CrossRefGoogle Scholar
Vempati, S., Mitra, J., Dawson, P., Nanoscale Res. Lett. 7, 470 (2012).CrossRefGoogle Scholar
Ye, J.D., Gu, S.L., Qin, F., Zhu, S.M., Liu, S.M., Zhou, X., Liu, W., Hu, L.Q., Zhang, R., Shi, Y., Zheng, Y.D., Appl. Phys. A: Mater. Sci. Process., 81, 759 (2005).CrossRefGoogle Scholar
Vempati, S., Chirakkara, S., Mitra, J., Dawson, P., Nanda, K.K., Krupanidhi, S.B., Appl. Phys. Lett. 100, 162104 (2012).CrossRefGoogle Scholar
Ahn, C.H., Kim, Y.Y., Kim, D.C., Mohanta, S.K., Cho, H.K. J. Appl. Phys. 105, 013502 (2009).CrossRefGoogle Scholar
Bylander, E.G., J. Appl. Phys. 49, 1188 (1978).CrossRefGoogle Scholar
Lin, B., Fu, Z., Jia, Y., Appl. Phys. Lett. 79, 943 (2001).CrossRefGoogle Scholar
Xu, P.S., Sun, Y.M., Shi, C.S., Xu, F.Q., Pan, H.B., Nucl. Instrum. Methods B 199 286 (2003).CrossRefGoogle Scholar
Zeng, H., Duan, G., Li, Y., Yang, S., Xu, X., Cai, W., Adv. Funct. Mater. 20, 561 (2010).CrossRefGoogle Scholar
Vanheusden, K., Warren, W.L., Seager, C.H., Tallant, D.R., Voigt, J.A., Gnade, B.E., J. Appl. Phys. 79, 7983 (1996).CrossRefGoogle Scholar
Dijken, A.v., Meulenkamp, E.A., Vanmaekelbergh, D., Meijerink, A., J. Lumin. 90, 123 (2000).CrossRefGoogle Scholar
Daneshvar, N., Salari, D., Khataee, A.R., J. Photochem. Photobiol. A 162, 317 (2004).CrossRefGoogle Scholar
Matthews, R.W., Catal, J.. 97, 565 (1986).Google Scholar
Izumi, , Dunn, W.W., Wilbourn, K.O., Fan, F.R.F., Bard, A.J., J. Phys. Chem. 84, 3207 (1980).CrossRefGoogle Scholar