Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T05:33:25.775Z Has data issue: false hasContentIssue false

ZnO Nanofibers Doped with Ga, In and Er Fabricated with Electrospinning Technique

Published online by Cambridge University Press:  01 February 2011

Aurangzeb Khan
Affiliation:
khan@phy.ohiou.edu, Ohio University, Department of Physics and Astronomy, 251B Clippinger labs, Athens, OH, 45701, United States
Wojciech M. Jadwisienczak
Affiliation:
jadiwm@bobcat.ent.ohiou.edu, Ohio University, School of Electrical Engineering & Computer Science, Athens, OH, 45701, United States
Saima N. Khan
Affiliation:
saima@phy.ohiou.edu, Ohio University, Physics and Astronomy, 251B Clippinger labs, Athens, OH, 45701, United States
Martin E. Kordesch
Affiliation:
kordesch@phy.ohiou.edu, Ohio University, Physics and Astronomy, 251B Clippinger labs, Athens, OH, 45701, United States
Get access

Abstract

ZnO nanofibers doped with Ga, In and Er metals have been fabricated by electrospinning technique. The diameter of the fibers was in the range of 0.5-2 μm and the length can be up to several feet. After spinning fabrication step the samples were dried out and annealed at 900 °C in air. Room temperature photoluminescence (PL) spectra measured for undoped and In- and Ga-doped ZnO fiber samples exhibit only a strong near band edge (NBE) emission at ∼380 nm with very weak green band at 525 nm. In contrary, the PL spectrum of Er-doped ZnO fibers shows a very weak NBE and strong green emission band at ∼550 nm at 300 K. The electrospinning mechanism used for the fabrication of nanofibers was found to be productive, simple and easy to implement disregarding of the doping type and concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Heo, Y.W., Norton, D.P., Tien, L.C., Kwon, Y., Kang, B.S., Ren, F., Pearton, S.J., LaRoche, J.R. Mat. Scien. Engin. R 47, 1 (2004).Google Scholar
2. Jeong, M.-C., Oh, B.-Y., Ham, M.-Ho and Myoung, J.-M., Appl. Phys. Lett. 88, 202105 _(2006).Google Scholar
3. Sui, X. M., Shao, C. L., Liu, Y. C., Applied Physics Letters 87 113115 (2005).Google Scholar
4. Otten, C. J., Lourie, O. R., Yu, M. F., Cowley, J. M., Dyer, M. J., Ruoff, R. S., Buhro, W. E., Journal Of The American Chemical Society 124 4564 (2002).Google Scholar
5. Khan, A., Kordesch, M. E., Physica E-Low-Dimensional Systems & Nanostructures 30 51 (2005).Google Scholar
6. Sun, Y. G., Gates, B., Mayers, B., Xia, Y. N., Nano Letters 2 165 (2002).Google Scholar
7. Shen, G., Cho, J. H., Jung, S. I., Lee, Ch. J., Chem. Phys. Lett. 401 529 (2005).Google Scholar
8. Leprince-Wanga, Y., Yacoubi-Ouslima, A., Wang, G., Microelectronics Journal 36 625 (2005).Google Scholar
9. Shao, C. L., Yang, X. H., Guan, H. Y., Liu, Y. C., Gong, H., Inorg. Chem. Commun. 7 625 (2004).Google Scholar
10. Kossanui, J., Kouyate, D., Pouliquen, J., Ronfard-Haret, J. C., Valat, P., Oelkrug, D., Mammel, U., Kelly, G. P., and Wilkinson, F., J. Lumin. 46, 17 (1990).Google Scholar
11. Bachir, S., Azuma, K., Kossanyi, J., and Valat, P., J. Lumin. 75, 35 (1997).Google Scholar
12. Jadwisienczak, W. M., Lozykowski, H. J., Xu, A., and Patel, B., J. Electron. Mater. 31, 776 (2002).Google Scholar
13. Vanheusden, K., Warren, W. L., Seager, C. H., Tallant, D. R., Voigt, J. A. and Gnade, B. E.; J. Appl. Phys. 79 (10), (1996).Google Scholar