No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
ZnTe quantum dots (QDs) have been very attractive because of their potential applications in optoelectronic devices operating in the blue-green region of the spectrum. This paper describes a convenient one-step synthesis of high-quality ZnTe QDs in high-temperature organic solution with high yield. Anhydrous zinc chloride was dissolved in phenyl ether under argon protection and oleic amine was used as coordinating agent. Complex solution of metal tellurium in trioctylphosphine (TOP) was injected into the hot reaction mixture as a source of tellurium. The reaction was complete in several minutes and the resulting QDs were isolated by centrifugation and re-dispersed in hexane. The produced spherical ZnTe QDs are monodispersed and their sizes could be controlled simply by varying the growth temperature. The morphology and phase structure were investigated using TEM and XRD. Photoluminescence (PL) spectra were also studied and quantum size effects were observed as well.