No CrossRef data available.
Published online by Cambridge University Press: 17 April 2019
A transparent colloidal solution of YVO4:Bi3+,Eu3+ nanophosphor is prepared by the wet chemical synthesis in the presence of sodium citrate. When an ethylene glycol solution of Bi(NO3)3, aqueous solutions of (Y,Eu)(NO3)3, sodium citrate, and Na3VO4 are mixed and aged at 85 °C, crystalline YVO4:Bi3+,Eu3+ spherical nanoparticles of ∼ 20 nm in size are formed via the amorphous precursor during aging, as confirmed by X-ray diffractometry and transmission electron microscopy. The crystallization completes at the aging time of ∼ 25 min. At the same time, a sudden reduction in the hydrodynamic size is observed by dynamic light scattering analysis, and the colloidal solution becomes transparent to naked eyes. The nominal molar percentage of sodium citrate relative to the sum of metallic ions, Y3+, Bi3+, and Eu3+, affects the particle size and the aggregation property of the nanoparticles. The sample prepared at 50 mol% citrate, followed by aging at 85 °C for 60 min have the minimum mean size of primary nanoparticles, 21 nm, the minimum mean hydrodynamic size, 36 nm, and hence the highest transparency.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.