Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T01:21:11.427Z Has data issue: false hasContentIssue false

Weak Bonding Effect on the Ultralow Thermal Conductivity of Germanium Nanodot Arrays in Silicon

Published online by Cambridge University Press:  21 February 2012

Jean-Numa Gillet*
Affiliation:
University of Lille 1, Dept. of Physics, Cité scientifique, 59655 Villeneuve d’Ascq Cedex, France. Email: jngillet@gmail.com
Get access

Abstract

The thermoelectric figure of merit ZT depends on the thermal conductivity inverse. uperlattices with periodic thin layers were studied to obtain ZT > 1 due to phonon confinement between their layers. Unfortunately, their synthesis with ZT higher than 1 is hazardous due to lattice mismatches forming dislocations and cracks. Nanowires with low dimensionalities were also proposed. However, as the superlattices, they decrease the thermal conductivity in only one propagation direction. In experiments, these one-dimensional insulating materials usually fail to beat the lowest limit of amorphous Si (+/- 1 W/m/K). In this theoretical study, three-dimensional Ge quantum dot arrays in Si are proposed to obtain an extreme thermal-conductivity reduction. Two decrease effects are shown from a molecular supercrystal model. First, low phonon group velocities are computed by lattice dynamics. Second, near-field scattering is exalted assuming weak interface bonding. This prediction can lead to a significant ZT increase. Indeed, a thermalconductivity global minimum λ* = 0.009 W/m/K is predicted for a Si/Ge supercrystal with nanodot spacing of +/- 30 nm and Ge concentration of +/- 12.5 Ge at.%. This ultralow λ* is computed at 300 K assuming that all Ge nanodots are weakly bonded and scatter the phonons at the Si-Ge interfaces in the geometrical limit. Thermal conductivity evolution is analyzed with respect to the weakly-bonded Ge nanodot density.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Venkatasubramanian, R., Siivola, E., Colpitts, T., and O’Quinn, B., Nature (London) 413, 597602 (2001).Google Scholar
2. Hochbaum, A. I., Chen, R., Delgado, R. D., Liang, W., Garnett, E. C., Najarian, M., Majumdar, A., and Yang, P., Nature (London) 451, 163167 (2008).Google Scholar
3. Tritt, T. M., Bottner, H., and Chen, L., MRS Bulletin 33, 366368 (2008).Google Scholar
4. Gillet, J.-N., Chalopin, Y., and Volz, S., ASME J. Heat Transfer 131, 043206 (2009).Google Scholar
5. Gillet, J.-N., ACS Appl. Mater. Interfaces 2, 34863492 (2010).Google Scholar
6. Toberer, E. S., May, A. F., and Snyder, G. J., Chem. Mater. 22, 624634 (2010).Google Scholar
7. Wang, Z., Alaniz, J. E., Jang, W., Garay, J. E., and Dames, C. Nano Lett. 11, 22062213 (2011).Google Scholar
8. Persson, A. I., Koh, Y. K., Cahill, D. G., Samuelson, L., and Linke, H., Nano Lett. 9, 44844488 (2009).Google Scholar
9. Chern, W., Hsu, K., Chun, I. S., de Azeredo, B. P., Ahmed, N., Kim, K. H., Zuo, J.-M., Fang, N., Ferreira, P., and Li, X., Nano Lett. 10, 15821588 (2010).Google Scholar
10. Gillet, J.-N., Appl. Phys. Express 4, 015201 (2011).Google Scholar
11. Cahill, D. G., Watson, S. K., and Pohl, R. O., Phys. Rev. B 46, 61316140 (1992).Google Scholar
12. Chiritescu, C., Cahill, D. G., Nguyen, N., Johnson, D., Bodapati, A., Keblinski, P., and Zschack, P., Science 315, 351353 (2007).Google Scholar
13. Guise, O., Yates, J. T. Jr., Levy, J., Ahner, J., Vaithyanathan, V., and Schlom, D. G., Appl. Phys. Lett. 87, 171902 (2005).Google Scholar
14. Evers, W. H., De Nijs, B., Filion, L., Castillo, S., Dijkstra, M., and Vanmaekelbergh, D., Nano Lett. 10, 42354241 (2010).Google Scholar
15. Dove, M. T., Introduction to Lattice Dynamics, Cambridge Topics in Mineral Physics and Chemistry, No 4 (Cambridge Univ. Press, Cambridge, UK, 1993).Google Scholar
17. Jian, Z., Kaiming, Z., and Xide, X., Phys. Rev. B 41, 1291512918 (1990).Google Scholar
18. Gillet, J.-N., and Voltz, S., J. Electron. Mater. 39, 21542161 (2010).Google Scholar
19. Glassbrenner, C. J., and Slack, G. A., Phys. Rev. 134, A1058A1069 (1964).Google Scholar
20. Majumdar, A., ASME J. Heat Transfer, 115, 716 (1993).Google Scholar
21. Kim, W., and Majumdar, A., J. Appl. Phys. 99, 084306 (2006).Google Scholar
22. van de Hulst, H. C., Light Scattering by Small Particles (Dover, New York, 1981).Google Scholar
23. Bohren, C. F., and Huffman, D. R., Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).Google Scholar