Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T04:08:34.628Z Has data issue: false hasContentIssue false

Waveguide Optical Isolators Fabricated by Wafer Bonding

Published online by Cambridge University Press:  01 February 2011

Tetsuya Mizumoto
Affiliation:
Tokyo Institute of Technology, Dept. of Electrical and Electronic Engineering, 2–12–1 Ookayama, Meguro-ku, Tokyo, 152–8552, JAPAN CREST-JST
Hideki Yokoi
Affiliation:
Shibaura Institute of Technology, Dept. of Electronic Engineering, 3–9–14 Shibayura, Minato-ku, Tokyo, 108–8548, JAPAN CREST-JST
Get access

Abstract

Wafer bonding of a magnetooptic garnet crystal to III-V compound semiconductor and LiNbO3 is discussed for the application to waveguide optical isolators. Two types of waveguide isolators, an interferometric isolator and a semileaky isolator, are discussed. The interferometric isolator uses nonreciprocal phase shift and is composed of the GaInAsP guiding layer. The isolator has the advantage of integratability with optical active devices. The semileaky isolator composed of a magnetooptic garnet guiding and LiNbO3 upper cladding layer has the advantages of large fabrication tolerance and wide operating wavelength range. The performance of isolators is also demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yokoi, H., Mizumoto, T., Shinjo, N., Futakuchi, N., and Nakano, Y., Appl. Opt., 39, 61586164 (2000).Google Scholar
2. Mizumoto, T., Yokoi, H., Shimizu, M., and Narikawa, S., IEEE 2001 LEOS Annual Meeting Conf. Proc., 2, WW3, San Diego, CA, 580581 (2001).Google Scholar
3. Shimbo, M., Furukawa, K., Fukuda, K., and Tanzawa, K., Jpn. J. Appl. Phys., 60, 29872989 (1986).Google Scholar
4. Stengl, R., Tan, T., and Gosele, U., Jpn. J. Appl. Phys., 28, 17351741 (1989).Google Scholar
5. Suga, T., Kim, T. H., and Howlader, M. M. R., 2004 IEEE Electronic Components & Technology Conf. (ECTC), 484490 (2004).Google Scholar
6. Yokoi, H., Mizumoto, T., Shimizu, M., Waniishi, T., Futakuchi, N., Kaida, N., and Nakano, Y., Jpn. J. Appl. Phys., 38, 47804783 (1999).Google Scholar
7. Yokoi, H. and Mizumoto, T., Electron. Lett., 33, 17871788 (1997).Google Scholar
8. Cai, Y., Mizumoto, T., Naito, Y., J. Lightwave Technol., 8, 16211629 (1990).Google Scholar
9. Shintaku, T. and Uno, T., J. Appl. Phys., 76, 81558159 (1994).Google Scholar
10. Yamamoto, S., Okamura, Y., and Makimoto, T., IEEE. J. Quantum Electron., QE–12, 764770 (1976).Google Scholar
11. Kirsh, S.T., Biolsi, W.A., Blank, S.L., Tien, P. K., Martin, R.J., Bridenbaugh, P.M., and Grabbe, P., J. Appl. Phys., 52, 31903199 (1981).Google Scholar