Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T13:31:01.207Z Has data issue: false hasContentIssue false

Visible-Light Inactivation of Escherichia Coli on N-Doped Titanium Oxide Thin Films

Published online by Cambridge University Press:  01 February 2011

Pinggui Wu
Affiliation:
pwu1@uiuc.edu, University of Illinois at Urbana-Champaign, Department of Materials Science and Engineering, 1304 W. Green St., Urbana, IL, 61801, United States, 217-333 2736
JianKu Shang
Affiliation:
jkshang@uiuc.edu, University of Illinois at Urbana-Champaig, Department of Materials Science and Engineering, 1304 W. Green St., Urbana, IL, 61801, United States
Get access

Abstract

Antimicrobial behavior of nitrogen-doped titanium dioxide (TiON) thin films was examined by cell viability assays under visible light illumination, using Escherichia coli as the indicator. The nitrogen doping was found to enable visible-light inactivation of Escherichia coli on titanium oxide films. At a light intensity of 1.6 mW/cm2, TiON films reached a bacterial killing rate of about 50% in half an hour, comparable to those reported for ultraviolet light irradiated TiO2. In the range of nitrogen concentrations from 0.2 to 0.9, the bacterial killing rates showed no clear correlation with the nitrogen concentration for the TiON films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Litter, M. Appl.Catalysis B: Environ. 23, 89114 (1999).Google Scholar
2. Sakatani, Y., Nunoshige, J., Ando, H., Okusako, K., Koike, H., Takata, T., Kondo, J. N., Hara, M., Domen, K. J. Mater. Res. 19, 21002108 (2004).Google Scholar
3. Huang, N., Xiao, Z., Huang, D., Yuan, C., Supramolecular Sci. 5, 559564 (1998).Google Scholar
4. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y.: Science 293, 269 (2001).Google Scholar
5. Sakthivel, S., Kisch, H.: ChemPhysChem 4, 487 (2003)Google Scholar
6. Irie, H., Watanabe, Y., Hashimoto, K.: J. Phys. Chem. B 107, 5483 (2003)Google Scholar
7. Burda, C., Lou, Y., Chen, X., Samia, A. C. S., Stout, J., Gole, J. L.: Nano Lett. 3, 1049 (2003)Google Scholar
8. Wu, P. G., Ma, C. H., Shang, J. K. J. Appl. Phys. A 81, 14111417 (2005).Google Scholar
9. Matsunaga, T., Tomoda, R., Nakajima, T. and Wake, H., FEMS Microbiol Lett 29, 211214 (1985).Google Scholar
10. Choi, Y.S., Kim, B.W., J. of Chemical Technology & Biotechnology 75, 11451150 (2000).Google Scholar
11. Ohko, Y., Utsumi, Y., Tatsuma, T., Niwa, C., Kubota, Y., Kobayakawa, K., Satoh, Y., and Fujishima, A., J Biomed Mater Res. 58, 97101 (2001).Google Scholar
12. Yu, J. C., Ho, W., Yu, J., Yip, H., Wong, P. and Zhao, J., Environ. Sci. Technol 39, 11751179 (2005).Google Scholar
13. Miyauchi, M., Ikezawa, A., Tobimatsu, H., Irie, H. and Hashimoto, K., Phys. Chem. Chem. Phys. 6, 865870 (2004).Google Scholar
14. Feuser, J., Walter, J., Kula, M. R. and Thömmes, J., Bioseparation, 8, 99109 (1999).Google Scholar
15. Diwald, O., Thompson, T. L., Zubkov, T., Goralski, E. G., Walck, S. D., and Yates, J. T. J. Phys. Chem. B 108, 6004 (2004)Google Scholar