Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T23:41:53.888Z Has data issue: false hasContentIssue false

Vibrational Spectra of a-Si:H Obtained by Pds

Published online by Cambridge University Press:  21 February 2011

E. Lotter
Affiliation:
Institut fur Physikalische Elektronik, Universitat Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart 80, Federal Republic of, Germany
M. B. Schubert
Affiliation:
Institut fur Physikalische Elektronik, Universitat Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart 80, Federal Republic of, Germany
M. Heintze
Affiliation:
Institut fur Physikalische Elektronik, Universitat Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart 80, Federal Republic of, Germany
G. H. Bauer
Affiliation:
Institut fur Physikalische Elektronik, Universitat Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart 80, Federal Republic of, Germany
Get access

Abstract

In the energy range below mid-gap, absorption spectra obtained by photothermal deflection spectroscopy (PDS) show much higher values than data evaluated from photo-current measurements. This difference can now be explained as an additional absorption arising from combined vibrational excitation of molecular hydrogen and Si-H stretching modes, which can occur when the H2 molecule is deformed in a collision with Si-H. Down to lower energies, our samples absorb even stronger than in mid-gap. Extension of spectral scans down to photon energies of 0.4 eV shows that this results from absorption of the high energy wings of the collision induced H2 absorption, which is superimposed by the first overtone of the Si-H and Si-H2 stretching modes. The analysis of the H2 absorption profile and strength on samples as grown and annealed gives evidence that molecular hydrogen is enclosed in small cavities and polarized by anisotropic environment in as-grown material while it is concentrated in larger voids under high pressure after annealing above 350°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vancěček, M., Abrahám, A., Štika, O., Stuchlik, J., and Kočka, J., phys. stat. sol. (a) 83, 617 (1984).Google Scholar
2. Chabal, Y. J. and Patel, C. K. N., Phys. Rev. Lett. 53, 210 (1984).Google Scholar
3. Halonen, L. and Child, M. S., Mol. Phys. 46, 239 (1982).Google Scholar
4. Kriegler, R. J. and Welsh, H. L., Can. J. Phys. 46, 1181(1968).Google Scholar
5. Chisholm, D. A. and Welsh, H. L., Can. J. Phys. 32, 291 (1954).Google Scholar
6. Hare, W. F. J. and Welsh, H. L., Can. J. Phys. 36, 88 (1958).CrossRefGoogle Scholar
7. Reddy, S. P., Varghese, G., and Prasad, R. D. G., Phys. Rev. A, 15, 975 (1977).Google Scholar
8. Welsh, H. L., J. Atmos. Sci. 26, 835 (1969).Google Scholar
9. Van Kranendonk, J., Can. J. Phys. 46, 1173 (1968).Google Scholar
10. conradi, M. S. and Norberg, R. E., Phys. Rev. B, 24, 2285 (1981).CrossRefGoogle Scholar
11. Boyce, J. B., Ready, S. E., Stutzmann, M., and Norberg, R. E., J. Non. Cryst. Solids 114, 211 (1989).Google Scholar
12. Volz, M. P., Santos-Filho, P., Conradi, M. S., Fedders, P. A., and Norberg, R. E., Phys. Rev. Lett. 63, 2582 (1989).Google Scholar
13. Löhneyesen, H. v., Schink, H. J., and Beyer, W., Phys. Rev. Lett. 52, 549 (1984).Google Scholar
14. Welsh, H. L., Crawford, M. F., MacDonald, J. C. F., and Chisholm, D. A., Phys. Rev. 83, 1264 (1951).Google Scholar