Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T13:28:34.644Z Has data issue: false hasContentIssue false

Very large plasmon band shift in strongly coupled metal nanoparticle chain arrays.

Published online by Cambridge University Press:  01 February 2011

L. A. Sweatlock
Affiliation:
Thomas J. Watson Laboratories of Applied Physics, Caltech Pasadena, CA 91125, USA
J. J. Penninkhof
Affiliation:
FOM Institute for Atomic and Molecular Physics (AMOLF), Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
S. A. Maier
Affiliation:
Thomas J. Watson Laboratories of Applied Physics, Caltech Pasadena, CA 91125, USA
A. Polman
Affiliation:
FOM Institute for Atomic and Molecular Physics (AMOLF), Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
H. Atwater
Affiliation:
Thomas J. Watson Laboratories of Applied Physics, Caltech Pasadena, CA 91125, USA
Get access

Abstract

30 MeV silicon ion irradiation of silica glass containing 10 nm silver nanocrystals causes alignment of the nanocrystals in closely spaced linear arrays along the ion tracks. Optical transmission measurements show a 1.5 eV splitting of the surface plasmon resonant absorption bands for polarizations longitudinal and transversal to the arrays. The resulting material is a highly anisotropic glass that absorbs blue light of one polarization, and near-infrared light of the orthogonal polarization. Finite-difference time domain simulations are used to explore the effects of interparticle spacing and total array length on the absorption properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Mie, G. Ann. Phys. 25, 377445 (1908).Google Scholar
[2] Kreibig, U. and Vollmer, M., >Optical Properties of Metal Clusters. (Springer, 1995).Optical+Properties+of+Metal+Clusters.+(Springer,+1995).>Google Scholar
[3] Gérardy, J. M. and Ausloos, M., PRB 25, 4204 (1982).Google Scholar
[4] Quinten, M. and Kreibig, U., Appl. Opt. 32, 6173 (1993).Google Scholar
[5] Maier, S. A. et al., Nature Materials 2, 229 (2003).Google Scholar
[6] Saleh, B. E. and Teich, M. C., Fundamentals of Photonics. (Wiley, 1991).Google Scholar
[7] Mekis, A. et al., PRL 77, 37873790 (1996).Google Scholar
[8] Lamprecht, et al., APL 79, 51 (2001).Google Scholar
[9] Maier, S. A., Kik, P. G., and Atwater, H. A., APL 81, 17141716 (2002).Google Scholar
[10] Roorda, S., van Dillen, T., Graf, C., Vredenberg, A. M., Kooi, B. J., van Blaaderen, A., and Polman, A., in press 2003.Google Scholar
[11] Snoeks, E., van Blaaderen, A., van Dillen, T., van Kats, C. M., Brongersma, M. L., and Polman, A., Adv. Mat. 12, 1511 (2000).Google Scholar
[12] Penninkhof, J. J., Sweatlock, L. A., Vredenberg, A. M., Kooi, B. J., Maier, S. A., Atwater, H. A., and Polman, A., APL 83, 4137 (2003).Google Scholar
[13] Kaempfe, M., Rainer, T., Berg, K.-J., Seifert, G., and Graener, H., APL 74, 1200 (1999).Google Scholar
[14] Kaempfe, M., Hofmeister, H., Hopfe, S., Seifer, G., and Graener, H.. J. Phys. Chem. B 2000, 1184711852.Google Scholar
[15] Lamprecht, B. et al., PRL 84, 47214724 (2000).Google Scholar