Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T14:08:35.471Z Has data issue: false hasContentIssue false

Vanadium Molecular Sieve, Vapo-5: Preparation and Electrochemical Characterization

Published online by Cambridge University Press:  10 February 2011

F. Bedioui
Affiliation:
Laboratoire d'Electrochimie et de Chimie Analytique (URA n°216 du CNRS), Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, 75231 Paris cedex 05, France33 1 44 27 67 51; bedioui@ext.jussieu.fr.
E. Briot
Affiliation:
Laboratoire d'Electrochimie et de Chimie Analytique (URA n°216 du CNRS), Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, 75231 Paris cedex 05, France33 1 44 27 67 51; bedioui@ext.jussieu.fr.
J. Devynck
Affiliation:
Laboratoire d'Electrochimie et de Chimie Analytique (URA n°216 du CNRS), Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, 75231 Paris cedex 05, France33 1 44 27 67 51; bedioui@ext.jussieu.fr.
K. J. Balkus Jr
Affiliation:
Department of Chemistry, University of Texas at Dallas, Richardson TX 75083–0688, USAbalkus@utdallas.edu
Get access

Abstract

The vanadium containing molecular sieve VAPO-5 was characterized by using cyclic voltammetry. The as-synthesized and calcined samples contain loosely bound VO2+ species that can be removed by immersion in the aqueous electrolyte solution. The steady-state cyclic voltammograms of VAPO-5 reveal two distinct reversible V(5+)/V(4+) processes centered at Eeq(I) = 0.11 V/SCE and Eeq(II) = −0.07 V/SCE. These processes have been proposed to arise from framework vanadium located at structurally distinct sites V-O-T (T = Al or P).

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wilson, S. T. and Flanigen, E. M., U. S. Patent No. 4 567 029 (1986)Google Scholar
2. Montes, C., Davis, M. E., Murray, B. and Narayana, M., J. Phys. Chem. 94, 6431 (1990).Google Scholar
3. Jhung, S. H., Uh, Y. S. and Chon, H., Appl. Catal. 62, 61 (1990).Google Scholar
4. Rigutto, M. S. and Van Bekkum, H., Appl. Catal., 68, L1 (1991).Google Scholar
5. Centi, G., Perathoner, S., Trifiro, F., Aboukais, A., Aissi, C. F. and Guelton, M., J. Phys. Chem., 96, 2617 (1992).Google Scholar
6. Blasco, T., Concepcion, P., Nieto, J. M. Lopez and Parniente, J. Perez, J. Catal. 152, 1 (1995).Google Scholar
7. Weckhuysen, B. M., Vannijvel, I. P. and Schoonheydt, R. A., Zeolites 15, 482 (1995).Google Scholar
8. Rigutto, M. S. and Van Bekkum, H., J. Mol. Catal. 81, 77 (1993).Google Scholar
9. Whittington, B. I. and Anderson, J. R., J. Phys. Chem. 97, 1013 (1993).Google Scholar
10. De Castro-Martins, S., Khouzami, S., Tuel, A., Taârit, Y. Ben, Murr, N. El and Sellami, A., J. Electroanal. Chem. 350, 15 (1993).Google Scholar
11. De Castro-Martins, S., Tuel, A. and Taârit, Y. Ben, Zeolites 14, 130 (1994).Google Scholar
12. De Guzman, R. N., Shen, Y. F., Shaw, B. R., Suib, S. L. and O'Young, C. L., Chem. Mater. 5, 1395 (1993).Google Scholar
13. Bedioui, F., Briot, E., Devynck, J. and Balkus, K. J. Jr., Inorg. Chim. Acta, in press.Google Scholar
14. Israel, Y. and Meites, L., in Encyclopedia of Electrochemistry of the Elements”, edited by Bard, A. J. (New York, 1976), vol 7, pp 293.Google Scholar
15. Tielen, N., Geelen, M. and Jacobs, P. A., Acta Phys. Chem. 31, 1 (1985).Google Scholar