Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T23:35:50.836Z Has data issue: false hasContentIssue false

Uv-Ozone Cleaning of GaAs (100) Surfaces for Device Applications

Published online by Cambridge University Press:  26 February 2011

J. S. Solomon
Affiliation:
Research Institute, University of Dayton, Dayton, Ohio 45469
S. R. Smith
Affiliation:
Research Institute, University of Dayton, Dayton, Ohio 45469
Get access

Abstract

GaAs (100) substrates were subjected to UV-ozone, wet chemical, and thermal treatments prior to deposition of Ni contact structures. The use of UV-ozone showed marked improvement in the electrical characteristics compared to the wet chemical and thermal treatments alone. The major effect of UV-ozone is the nondestructive removal of carbonous contaminants. Results of C-V and I-V barrier height measurements on Ni contact structures fabricated on the treated surfaces are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iida, Shinya and Ito, Kazuhiro, J. Electrochem. Soc. 118, 768 (1971).Google Scholar
2. Chang, C. C., Citrin, P. H., and Schwartz, B., J. Vac. Sci. Technol. 14, 943 (1977).Google Scholar
3. Munoz-Yague, A., Piqueras, J., and Faire, N., J. Electrochem. Soc. 128, 149 (1981).Google Scholar
4. Aspnes, D. E. and Studna, A. A., Appl. Phys. Lett. 39, 316 (1981).Google Scholar
5. Vasquez, R. P., Lewis, B. F., and Grunthaner, F. J., J. Vac. Sci. Technol. B 1 791 (1983).Google Scholar
6. Adachi, Sadao and Oe, Kunishige, J. Electrochem. Soc. 130, 2427 (1983).Google Scholar
7. Oelhafen, P., Freeouf, J. L., Pettit, G. D., and Woodall, J. M., J. Vac. Sci. Technol. B 1, 787 (1983).Google Scholar
8. Sinharoy, Samar and Hoffman, Richard A., IEEE Trans. Electron Dev. ED–31 1090 (1984).Google Scholar
9. Woodhall, J. M., Oelhafen, P., Jackson, T. N., Freeouf, J. L., and Pettit, G. D., J. Vac. Sci. Technol. B 1, 795 (1983).Google Scholar
10. Cho, A. Y. and Panish, M. B., J. Appl. Phys. 43, 5118 (1972).Google Scholar
11. Cho, A. Y. and Arthur, J. R., Prog. Solid State Chem. 10, 157 (1975).Google Scholar
12. Ploot, K., in Crystals: Growth, Properties and Applications (Springer, New York, 1980), Vol. 3, p. 73.Google Scholar
13. Ploog, K. and Fisher, A., J. Appl. Phys. 13, 111 (1977).Google Scholar
14. Foxon, C. T., Acta Electron. 21, 139 (1978).Google Scholar
15. Chang, C. A., Serrano, C. M., Chang, L. L., and Esaki, L., Appl. Phys. Lett. 37, 538 (1980).Google Scholar
16. Arthur, J. R., J. Appl. Phys. 38, 4023 (1967).Google Scholar
17. Cho, A. Y., Thin Solid Films 100, 291 (1983).Google Scholar
18. Wu, C. S., Scott, D. M., Chen, Wei-Xi, and Lau, S. S., J. Electrochem. Soc. 132, 918 (1985).Google Scholar
19. Sowell, R. R., Cuthrell, R. E., Mattox, D. M., and Bland, R. D., J. Vac. Sci. Technol. B, 474 (1974).Google Scholar
20. Vig, J. R., in Surface Contamination: Its Genesis, Detection, and Control, Vol. 1, edited by Mittal, K. L. (Plenum Press, New York, 1979), p. 235.Google Scholar