Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T13:15:22.207Z Has data issue: false hasContentIssue false

Universal behavior of the pressure coefficient of the light absorption and emission in InGaN structures

Published online by Cambridge University Press:  17 March 2011

P. Perlin
Affiliation:
High Pressure Research Center, “Unipress”, ul Sokolowska 29/37, 01-142 Warsaw, Poland
T. Suski
Affiliation:
High Pressure Research Center, “Unipress”, ul Sokolowska 29/37, 01-142 Warsaw, Poland
P. Wisniewski
Affiliation:
High Pressure Research Center, “Unipress”, ul Sokolowska 29/37, 01-142 Warsaw, Poland
I. Gorczyca
Affiliation:
High Pressure Research Center, “Unipress”, ul Sokolowska 29/37, 01-142 Warsaw, Poland
S. Lepkowski
Affiliation:
High Pressure Research Center, “Unipress”, ul Sokolowska 29/37, 01-142 Warsaw, Poland
M. Hansen
Affiliation:
University of California, Santa Barbara, CA 93106
S.P. DenBaars
Affiliation:
University of California, Santa Barbara, CA 93106
B. Damilano
Affiliation:
Centre de Recherche sur l'Hetero-Epitaxie et ses Applications, Valbonne, France
N. Grandjean
Affiliation:
Centre de Recherche sur l'Hetero-Epitaxie et ses Applications, Valbonne, France
J. Massie
Affiliation:
Centre de Recherche sur l'Hetero-Epitaxie et ses Applications, Valbonne, France
Get access

Abstract

We have studied an influence of pressure on the emission and absorption spectra measured from various types of InGaN structures such as epilayers, quantum wells and quantum dots. While the known pressure coefficients of GaN and InN bandgaps are in the range 40-25 meV/GPa, the experimental observation for the light emission shift with pressure for InGaN alloys is dramatically different. With the increasing In content and thus decreasing emission energy the observed pressure coefficients become very small eventually reaching zero or even slightly negative values! We have observed a much weaker trend for the decrease of the pressure coefficient for the absorption edges of InGaN. First principle calculations of InGaN band structure and its modification with a pressure are not able to explain the huge effect observed in the emission experiment but are in a good agreement with the results obtained in optical absorption measurements. We discuss here the possible mechanisms which can account for extremely low pressure coefficient of the light emission and the discrepancy between sensitivity light emission and absorption on applied pressure in InGaN alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S. and Fasol, G., The Blue Laser Diode, (Springer, Berlin, 1997).Google Scholar
2. Chichibu, S. et al. Appl. Phys. Lett. 69, 4188, (1996)Google Scholar
3. High Pressure in Semiconductor Physics, Semiconductors and Semimetals, Vols. 54, 55, ed. Suski, T. and Paul, W. (Academic Press, 1998 Google Scholar
4. Perlin, P., Iota-Herbei, V., Weinstein, B.A., Wisniewski, P., Suski, T., Eliseev, P.G., and Osinski, M., Appl. Phys. 70, 2993 (1997)Google Scholar
5. Perlin, P., Iota-Herbei, V., Weinstein, B.A., Teisseyre, H., Suski, T., Hersee, S., Kisielowski, C., Weber, E.R., and Yang, J., Mat.Res.Soc.Symp.Proc. 512, 399 (1998).Google Scholar
6. Shan, W., Song, J.J., Feng, Z.C., Shurman, M., Stall, R. A., Appl. Phys. Lett. 71, 2433 (1997)Google Scholar
7. Damilano, B., Grandjean, N., Dalmasso, S., Massies, J.. Appl. Phys. Lett. 75, 3751 (1999)Google Scholar
8. Damilano, B., Grandjean, N., Massies, J., Dalmasso, S., JL. Reverchon, Calligaro, M., Duboz, JY., Siozade, L., Leymarie, J., Physica Status Solidi A, 180, 363 (2000)Google Scholar
9. Perlin, P., Gorczyca, I., Wisniewski, P., Lepkowski, N.E., Svane, A., Hansen, M., DenBaars, S.P., Damilano, B., Grandjean, N. and Massie, J., unpublished.Google Scholar
10. Shan, W., Walukiewicz, W., Ager, J.W. III, Haller, E.E., Geisz, J.F., Friedman, D.J., Olson, J.M., and Kurz, S.R., Phys. Rev. Lett. 82, 1221 (1999).Google Scholar
11. Bellaiche, L., Mattila, T., Wang, L.W., Wei, S.H., and Zunger, A.,Appl.Phys.Lett. 74, 1842 (1999)Google Scholar
12. Perlin, P., Mattos, L., Shapiro, N.A., Kruger, J., Wong, W.S., Sands, T., Cheung, N.W., Weber, E.R., J. Appl. Phys. 85, 2385 (1999)Google Scholar
13. Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., Appl. Phys. Lett. 69, 4188 (1996).Google Scholar
14. Perlin, P., Kisielowski, C., Iota, V., Weinstein, B. A., Mattos, L., Shapiro, N. A., Kruger, J., Weber, E. R., Yang, Jinwei, Appl. Phys. Lett. 73, 2778, (1998)Google Scholar
15. Bernardini, F., Fiorentini, V., and Vanderbilt, D., Phys. Rev. B 56, R10024 (1997);Google Scholar
16. Fiorentini, V., Bernardini, F., Salla, F. Della, Carlo, A. Di, and Lugli, P., Phys. Rev. B 60, 8849(1999)Google Scholar